Изобретение относится к области нефтедобычи и может быть использовано при разработке нефтяных месторождений с высокой пластовой температурой, в том числе на поздних стадиях разработки.
При разработке пластов с использованием систем поддержания пластового давления закачкой воды в пласт широко используется нагнетание в пласт оторочек гидрофильных полимерных систем, в частности на основе полиакриламида - ПАА. Механизм действия этих систем основан на изменении направления потоков закачиваемой в нефтяной пласт воды, что приводит к увеличению охвата пласта заводнением, дренированию застойных зон нефтяного пласта и, как следствие, к получению дополнительной нефти.
Известен способ [1], в котором к раствору ПАА и ацетата хрома добавляют едкий натр до pH 8,0 и натрий углекислый кислый в количестве 2,48 мас.%. Недостатком способа является его сложность и использование экологически вредных солей тяжелых металлов.
Известен способ нефтедобычи, в котором в качестве сшивателя используются соли алюминия [2]. Способ заключается в попеременной закачке оторочек из раствора полимера, соли алюминия и пресной воды, объем которой рассчитывают по специальной формуле, учитывающей геопромысловые характеристики пласта (пористость, толщину высокопроницаемого участка, расстояние от забоя до места образования вязко-упругого состава). Недостатком способа является предварительное проведение большого объема геофизических работ по определению конкретных параметров используемой формулы.
Наиболее близкими по технической сущности и достигаемому эффекту являются содержащий гель реагент - добавка к воде для увеличения нефтедобычи, представляющая собой сшитый ионизирующим излучением в твердой фазе ПАА, и способ нефтедобычи с его использованием [3]. Этот реагент, в отличие от других сшитых систем, представляет собой однокомпонентный продукт. Его применение на скважине ограничивается смешением его с водой, в результате чего образуется суспензия из частичек мягких гелей (полимерно-гелевая система), которая легко закачивается в пласт и дает существенное увеличение добычи нефти. Однако этот реагент и способ нефтедобычи с его использованием применимы только в случае пластовых температур, не превышающих 60-70°C.
Целью изобретения является повышение температурного предела работоспособности реагента при сохранении присущей прототипу простоты технологических операций.
Поставленная цель достигается тем, что реагент для нефтедобычи, содержащий порошкообразный полиакриламид - ПАА, обработанный ионизирующим облучением, содержит порошкообразный ПАА с молекулярной массой 14-25 млн. ед. и степенью гидролиза 20-30%, обработанный ионизирующим облучением дозой 3-20 кГр ускоренными электронами с энергией 5-10 МэВ в составе композиции, содержащей дополнительно 5-20 мас.% от массы ПАА стабилизатора - порошка сульфата алюминия или алюмокалиевых квасцов.
Поставленная цель достигается также тем, что способ нефтедобычи включает закачку в нагнетательную скважину оторочки, содержащей водный раствор хлоридов натрия и кальция с минерализацией 4-40 г/л или пластовой воды той же минерализации и указанный выше реагент при его концентрации 0,5-2,0 мас.%
Сущность изобретения состоит во взаимодействии частиц полиакриламида и сернокислой соли алюминия, обработанных совместно в твердой фазе ускоренными электронами с энергией 5-10 МэВ дозой 3-20 кГр, в водной среде с образованием дисперсной полимерно-гелевой системы на основе металло-полимерного композита. Этот продукт сохраняет реологические свойства полимерно-гелевой системы, присущие прототипу, но обладает более высокой термической стабильностью. Совместная обработка полиакриламида и соли алюминия позволяет получить готовый к использованию продукт непосредственно после обработки ионизирующим излучением и одновременно сохранить инициированные ионизирующим излучением радикалы как в полимере, так и в алюминиевой соли до непосредственного контакта реагента с водной средой. При этом совместное растворение полиакриламида и соли алюминия в воде не приводит к быстрому росту эффективной вязкости дисперсной полимерно-гелевой системы, так как реакция протекает внутри гелевой частицы и ее реологические свойства почти не изменяются. Эффективность реагента может быть повышена, если в качестве воды для приготовления указанной полимерно-гелевой системы использовать воду с минерализацией 4-40 г/л, которую можно приготовить добавкой к пресной воде хлоридов натрия и кальция или использовать пластовую воду с той же минерализацией. Увеличение эффективности реагента происходит за счет уменьшения объема гелевых частиц сшитого гидролизованного полиакриамида, которое происходит за счет снижения эффективного заряда ионогенных звеньев (карбоксильных групп) полиакриламида, вызванного повышением электропроводности водного раствора при добавке солей натрия, кальция.
При закачке полимерно-гелевой системы с использованием предлагаемого реагента его оптимальная концентрация в воде составляет 0,5-2 мас.%. При концентрации более 2% система не может быть закачана в пласт из-за высокой вязкости. При концентрации менее 0,5% эффективность применения снижается из-за того, что дальнейшее разбавление не приводит к увеличению объема закачиваемого в пласт геля.
Техническим результатом является повышение температурной стабильности гелеобразного металло-полимерного композита, следствием чего является возможность использовать его при пластовых температурах 60-100°C, в том числе в пластах с низкой проницаемостью коллектора, на поздних стадиях разработки.
Пример 1.
В лабораторных условиях проведено исследование фильтрационных свойств полимерно-гелевых систем, полученных смешением заявляемого реагента с пресной (минерализация 0,5 г/л) и пластовой (минерализация 20 г/л) водой при фильтрации через сетки с размером пор, близким к размеру пор поровых каналов пород пласта нефтяных месторождений. С этой целью изготовлен лабораторный стенд, включающий проточную фильтрационную ячейку, с одной стороны которой крепятся сменные фильтры-сетки, а с другой стороны ячейка соединена со шприцевым насосом, который с постоянной объемной скоростью нагнетает воздух в ячейку, создавая давление. Образец под действием давления газа начинал фильтроваться через сетку. Термостабильность рассчитывали по изменению остаточного гидравлического сопротивления сеточного фильтра диаметром 10 мм после фильтрации через него фиксированного объема полимерно-гелевой системы объемом 40 мл до и после термообработки ее при температуре 95-100°C в течение 20 и 72 часов. В процессе фильтрации замеряли объем фильтрата, время и давление газа, под действием которого происходила фильтрация образца через сетку. Сетка с диаметром ячеек 50 мкм, 100 мкм и 300 мкм, близких по размеру ячеек к размеру пор пластовых пород, что моделирует условия фильтрации в пласте. При фильтрации гелей через сеточный фильтр часть гелей закупоривает ячейки сетки, что приводит к возрастанию гидравлического сопротивления. Стабильность гелей оценивали по величине остаточного сопротивления на сетке, создаваемого гелевыми частицами, которые не разрушились при термообработке. Величину деструкции (Д) рассчитывали по изменению остаточного гидравлического сопротивления на сеточном фильтре после фильтрации гелевой системы в интервале времени термообработки между началом и концом этапа термообработки по формуле:
Где ΔP1, ΔP2 - остаточное сопротивление, измеренное в кПа, на сетке соответственно в начале и конце этапа термообработки.
Образцы готовились следующим образом: порошкообразный полиакриламид с молекулярной массой 20 млн. ед. смешали с 10 мас.% (от массы полиакриламида) алюмокалиевых квасцов и обработали ускоренными электронами с энергией 8 МэВ дозой 12 кГр. Полученный продукт в количестве 0,5 мас.% смешали с водой пресной или пластовой и после набухания и образования полимерно-гелевой системы исследовали его фильтрационные свойства на описанном выше стенде. Часть образцов помещали в термостат с температурой в интервале 95-100°C и выдерживали их 20 или 72 часа. Далее исследовали их фильтрационные свойства. Результаты измерений для случая полимерно-гелевых систем, приготовленных как с применением обработки ускоренными электронами с энергией 8 МэВ, дозой 12 кГр с добавками стабилизаторов - алюмокалиевых квасцов и сульфата алюминия. Свойства полимерно-гелевых систем, приготовленных на пресной и пластовой водах представлены в таблице 1.
Из представленных в таблице 1 данных следует, что как исходный полиакриламид, так и полиакриламид, подвергнутый обработке ускоренными электронами (опыты №1-3, №7-9) не являются термически стабильными и деструктируют за время менее 20 часов. Образец ПАА с добавкой квасцов имеет ограниченную стабильность, его деструкция находится в пределах 23-95%. Деструкция ПАА, обработанного ионизирующим излучением (ускоренными электронами) совместно с алюмокалиевыми квасцами не превышает 15% в сопоставимых условиях.
Из анализа тех же данных следует, что меньшая деструкция наблюдается на сетках размера 50 мкм, чем на сетках 100 и 300 мкм, что означает более эффективную работу систем (опыт №4) в пластах с малой проницаемостью.
Пример 2
Было подготовлено 7 навесок порошкообразного полиакриламида по 100 г с молекулярной массой в интервале 14-25 млн. ед. и степенью гидролиза 20-30%. К каждому образцу добавлено от 5 до 20 (5-20 мас.%) грамм алюмокалиевых квасцов. После перемешивания композиции подвергли обработке на ускорителе электронов ускоренными электронами с энергией в интервале от 5 до 10 МэВ дозами в интервале 3-20 кГр. Далее образцы смешали с водой, имеющей минерализацию 15 г/л до образования однородной полимерно-гелевой системы с концентрацией реагента 1 мас.%. Эту систему испытывали на термическую стабильность при температуре 95-100°C в течение 20 и 72 часов по аналогии с примером 1. Результаты определения термостабильности по показателю остаточного сопротивления, создаваемого неразрушенными гелевыми частицами на фильтре с ячейками 100 мкм, представлены в таблице 2. Там же представлены расчетные показатели деструкции гелей в интервале времени термообработки 20-72 часа. Полученные данные показывают сохранение гелей в течение не менее 72 часов обработки в этих условиях при выбранных для испытаний условиях приготовления реагента и состава с его использованием.
Пример 3
Реагент для нефтедобычи, исследованный в примере 1, после смешения с водой образует полимерно-гелевую систему, реологические свойства которой изменяются в широких пределах. При достаточно высоких концентрациях полимера - более 2 мас.% - ее вязкость может возрасти настолько, что она не может быть закачана в скважину имеющимся технологическим оборудованием. Вязкость этой системы зависит от концентрации полимера и минерализации воды. В данном примере приводятся экспериментальные данные по величине вязкости этой системы в зависимости от концентрации полимера и минерализации воды. Модельные системы с различной минерализацией готовились на основе хлоридов натрия и кальция - основных компонентов пластовых вод. Выбрано типичное для этих вод соотношение хлорида натрия и хлорида кальция 9:2 и минерализация в интервале 4-40 г/л. Приготовленные образцы полимерно-гелевой системы были исследованы на реологические свойства и термическую стабильность. Для сравнения исследованы свойства аналогично приготовленных систем на основе полиакриламида, не подвергнутого обработке ускоренными электронами, с добавкой стабилизатора и без него. Для определения реологических свойств проводили измерение условной вязкости в вискозиметре-воронке с диаметром сливного патрубка 15 мм. Условная вязкость в данном случае рассчитывалась как отношение времени истечения смеси реагента и воды в указанных концентрациях к времени истечения воды. Термическую стабильность определяли по величине остаточного сопротивления на сеточном фильтре с размером пор 100 мкм после термообработки в течение 72 часов при 95-100°C. Факт наличия остаточного сопротивления и его величина является доказательством существования гелевых частиц в испытуемом образце. Результаты испытаний представлены в таблице 3. Из этих данных видно, что образцы систем на основе предлагаемого реагента в заявленных диапазонах концентраций реагента и минерализации воды (см. опыты 1-10) сочетают умеренную вязкость и наличие остаточного сопротивления на сеточном фильтре после термической обработки в течение 72 часов при 95-100°C. Сравнение с аналогичными системами на основе необработанного ускоренными электронами полиакриламида показывает, что последние имеют слишком высокую вязкость, чтобы быть закачаными в скважину.
Пример 4
Предложенные реагент и способ нефтедобычи с его использованием испытаны на Приобском нефтяном месторождении, для которого характерна высокая пластовая температура и низкая проницаемость коллектора. В качестве объекта испытаний выбран опытный участок с нагнетательной скважиной на Приобском месторождении с характеристиками, приведенными в таблице 4.
Для испытаний был приготовлен реагент в количестве 900 кг путем обработки смеси 810 кг полиакриламида молекулярной массы 14-24 млн. ед. и степенью гидролиза 25% с 90 кг алюмокалиевых квасцов (10 мас.%) ускоренными электронами с 8 МэВ дозой 12 кГр. На опытном объекте - нагнетательной скважине - произвели смешение этого реагента с 180 м3 подтоварной воды с минерализацией 4 г/л и произвели закачку полученной полимерно-гелевой системы в нагнетательную скважину. После этого нагнетательная скважина была пущена в эксплуатацию.
Наблюдением за окружением из добывающих скважин на упомянутом участке в течение 3-х месяцев установлен прирост дополнительной добычи в количестве 800 тонн. Это подтверждает результаты лабораторных экспериментов и доказывает применимость реагента и предлагаемого способа нефтедобычи для пластов с высокой температурой и низкой проницаемостью коллектора.
Источники информации
1. RU 2352771, E21B 43/22, 29.01.2007.
2. RU 2086757, E21B 43/22, 21.02.1995.
3. SU 1669404, E21B 43/22, 03.04.1989.
название | год | авторы | номер документа |
---|---|---|---|
Композиция, способ и реагент для нефтедобычи | 2019 |
|
RU2744686C2 |
СПОСОБ ПОВЫШЕНИЯ ДОБЫЧИ НЕФТИ | 2014 |
|
RU2558565C1 |
Порошковая композиция для ограничения водопритоков в скважины и способ ее применения | 2018 |
|
RU2712902C2 |
СПОСОБ ПОЛУЧЕНИЯ РЕАГЕНТА ДЛЯ НЕФТЕДОБЫЧИ И СПОСОБ НЕФТЕДОБЫЧИ С ЕГО ИСПОЛЬЗОВАНИЕМ | 2005 |
|
RU2283428C1 |
Способ увеличения добычи нефти | 2016 |
|
RU2656654C2 |
СПОСОБ ЗАВОДНЕНИЯ НЕФТЯНОГО ПЛАСТА | 2010 |
|
RU2464415C2 |
Способ ограничения водопритоков в газовых скважинах с аномально низким пластовым давлением | 2017 |
|
RU2711202C2 |
СОСТАВ ДЛЯ ПОВЫШЕНИЯ НЕФТЕДОБЫЧИ | 2015 |
|
RU2592932C1 |
СОСТАВ ДЛЯ ПОВЫШЕНИЯ НЕФТЕДОБЫЧИ | 2019 |
|
RU2723797C1 |
ГЕЛЕОБРАЗУЮЩИЙ ПОЛИМЕРНЫЙ МАТЕРИАЛ ДЛЯ ВЫРАВНИВАНИЯ ПРОФИЛЯ ПРИЕМИСТОСТИ И ВОДОИЗОЛЯЦИИ СКВАЖИН И СПОСОБ И УСТАНОВКА ДЛЯ ЕГО ПОЛУЧЕНИЯ | 2001 |
|
RU2180393C1 |
Изобретение относится к области нефтедобычи и может быть использовано при разработке нефтяных месторождений с высокой пластовой температурой, в том числе на поздних стадиях разработки. Реагент для нефтедобычи, содержащий порошкообразный полиакриламид - ПАА, обработанный ионизирующим облучением, содержит порошкообразный ПАА с молекулярной массой 14-25 млн. ед. и степенью гидролиза 20-30%, обработанный ионизирующим облучением дозой 3-20 кГр ускоренными электронами с энергией 5-10 МэВ в составе композиции, содержащей дополнительно 5-20 мас.% от массы ПАА стабилизатора - порошка сульфата алюминия или алюмокалиевых квасцов. Способ нефтедобычи, включающий закачку в нагнетательную скважину оторочки, содержащей водный раствор хлоридов натрия и кальция с минерализацией 4-40 г/л или пластовой воды той же минерализации и указанный выше реагент при его концентрации 0,5-2,0 мас.%. Технический результат - повышение температурного предела работоспособности реагента при сохранении простоты операций. 2 н.п. ф-лы, 4 табл., 4 пр.
1. Реагент для нефтедобычи, содержащий порошкообразный полиакриламид - ПАА, обработанный ионизирующим облучением, отличающийся тем, что содержит порошкообразный ПАА с молекулярной массой 14-25 млн. ед. и степенью гидролиза 20-30%, обработанный ионизирующим облучением дозой 3-20 кГр ускоренными электронами с энергией 5-10 МэВ в составе композиции, содержащей дополнительно 5-20 мас.% от массы ПАА стабилизатора - порошка сульфата алюминия или алюмокалиевых квасцов.
2. Способ нефтедобычи, включающий закачку в нагнетательную скважину оторочки, содержащей водный раствор хлоридов натрия и кальция с минерализацией 4-40 г/л или пластовой воды той же минерализации и реагент по п. 1 при его концентрации 0,5-2,0 мас.%.
SU 1669404 А3, 10.06.1999 | |||
СПОСОБ ИЗОЛЯЦИИ ВОДОПРИТОКОВ | 2005 |
|
RU2283423C1 |
N-МЕТИЛИРОВАННЫЙ БИС-4-ПИПЕРИДИЛФОСФИТ И СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИИ, СТОЙКОЙ К ОКИСЛИТЕЛЬНОМУ, ТЕРМИЧЕСКОМУ И СВЕТОВОМУ ВОЗДЕЙСТВИЮ | 1992 |
|
RU2086557C1 |
СПОСОБ ПРИМЕНЕНИЯ МОДИФИЦИРОВАННЫХ ПОЛИМЕРНЫХ СОСТАВОВ ДЛЯ ПОВЫШЕНИЯ НЕФТЕОТДАЧИ ПЛАСТОВ | 2007 |
|
RU2352771C2 |
СПОСОБ ЗАВОДНЕНИЯ НЕФТЯНОГО ПЛАСТА | 2010 |
|
RU2464415C2 |
Способ разработки нефтяной залежи | 1973 |
|
SU936822A3 |
СОСТАВ ДЛЯ ОГРАНИЧЕНИЯ ВОДОПРИТОКОВ В СКВАЖИНУ | 1998 |
|
RU2148149C1 |
US 3973629 A, 10.08.1976 |
Авторы
Даты
2015-09-10—Публикация
2014-05-16—Подача