Изобретение относится к методам измерения неэлектрических величин и может быть использовано для измерения линейных и угловых перемещений объекта наблюдения.
Известно устройство, содержащие подложку, покрытую термочувствительными элементами из пленки VOx. Источник света помещается на контрольном объекте. При движении объекта световой луч перемещается относительно чувствительных элементов, которые обладают памятью воздействия. Облученный элемент изменяет свое сопротивление. Выходной импульс с каждого элемента подсчитывается реверсивным счетчиком. Разрешающая способность датчика определяется размером элемента. (Бриндли К. Измерительные преобразователи: Справочное пособие: Перевод с английского. - Энергоатомиздат, 1991, 144 с.) .Недостатками устройства является необходимость возвращение подложки в начальное положение для возможности проведения измерения объекта наблюдения.
Наиболее близким предлагаемому изобретению является датчик перемещений, содержащий источник света, установленный на объекте наблюдателя, подложку с прямолинейной или угловой шкалой, образованной поглощающими полосками, расположенными на подложке на расстоянии друг от друга, равными размеру полоски, полоски на подложке расположены с образованием первого и второго рядов, смещенных относительно полосок второго ряда на одну полоску, полоски выполнены из материала с гистерезисной зависимостью сопротивления от температуры и каждая полоска снабжена сигнальным выводом, на другой стороне подложки размещены пленочные нагреватель и термопара, термочувствительные полоски подключены к аналоговому коммутатору, входящему в интерфейс измерительной системы (патент РФ №2297605. Датчик перемещений, МПК G01K 1/00 / А.С Олейник. Опубл. 20.04.2007).
Недостатками устройства являются необходимость закрепления источника света на контролируемом объекте наблюдения.
Основными требованиями, предъявляемыми к датчикам перемещения, являются: автономность, малые габариты, устойчивость к внешним воздействиям окружающей среды.
Рассмотренные выше датчики перемещения воспринимают перемещение объекта дистанционно. В оптическом датчике имеется подложка, покрытая элементами из пленки VOx. Источник света помещается на контрольном объекте. При движении объекта световой луч перемещается относительно чувствительных элементов, которые обладают памятью воздействия. Облученный элемент изменяет свое сопротивление. Выходной импульс с каждого элемента подсчитывается реверсивным счетчиком. Разрешающая способность датчика определяется размером элемента.
Задачей настоящего изобретения является
- повышение точности измерения за счет осуществления механического контакта между объектом наблюдения и датчиком линейных перемещений,
- обеспечение автономного режима измерений датчиком, пригодным для эксплуатации в полевых условиях.
Поставленная задача достигается тем, что подложка установлена в герметичной камере с прозрачной боковой стенкой, на верхней и нижней гранях которой выполнены выступы с продольными пазами, источник излучения установлен на подвижной каретке, закрепленной с возможностью перемещения по пазам выступов с помощью расположенных в этих пазах шариков, закрепленных на верхней и нижней гранях каретки.
Технический результат - повышение точности измерения за счет механической связи датчика с объектом наблюдения, получение компактной конструкции датчика, которая может использоваться автономно в полевых условиях.
Сопоставительный анализ с прототипом показывает, что подвижная каретка датчика, скользящая на металлических шарах, обеспечивает практически безлюфтовое соединение объекта наблюдения с датчиком. Использование фокона дополнительно сужает ширину световой полосы, что повышает точность измерения. Герметичная камера датчика с прозрачной крышкой надежно защищает термочувствительный слой датчика от воздействия окружающей среды.
Предлагаемое изобретение иллюстрируется чертежами, представленными на фиг. 1-3. На фиг. 1 приведен общий вид датчика линейных перемещений, на фиг. 2 показан внешний вид каретки с защелками, на фиг. 3 приведена топология пленочных элементов датчика, на фиг. 4 приведена гистерезисная зависимость термочувствительного слоя датчика.
На Фиг. 1 показан внешний вид датчика линейных перемещений. Датчик представляет собой прямоугольную герметичную камеру 1 с прозрачной стенкой 2. В камере имеются выступы 3, на внутренних верхней и нижней гранях которых выполнены продольные пазы 4. Внутри выступов 3 установлена с помощью металлических шаров 5 каретка 6, имеющая пазы 7 на своих верхней и нижней гранях. На боковых гранях каретки 6 расположены защелки 8, препятствующие сдвигу шаров из-под каретки. Каретка 6 свободно перемещается вперед/назад вдоль герметичной камеры 1. На каретке 6 установлен штырь 9, обеспечивающий механическое крепление наблюдаемого объекта относительно датчика, и световод 10, сопряженный со светодиодом. Внутри камеры расположена подложка 11, покрытая термочувствительными элементами в виде шкалы 12. На верхней поверхности кожуха размещены цифровой индикатор 13, элементы управления и сигнализации 14, а внутри камеры находится плата со схемой управления датчиком 15.
На фиг. 2 показан внешний вид каретки. На верхней и и нижней гранях каретки 6 выполнены пазы 4. Высота каретки соответствует расстоянию между выступами 3 герметичной камеры 1 (должен быть минимальный зазор). На ширине каретки 6 умещается по два шара (сверху и снизу) на каждой грани. Шары 5 расположены вплотную друг к другу и удерживаются в таком положении благодаря наличию защелок 8, размещенных на боковых гранях каретки 6. Защелка 8 представляет собой плоскую пластину из пружинистой стали. Размеры шаровидных зазоров между пазами 4 внутренних выступов 3 камеры 1 и пазами 7 граняей каретки 6 должны соответствовать размеру шаров. Перемещению каретки 6, при передаче усилия от объекта наблюдения за счет механической связи, противодействует трение качения шаров, величина которого незначительна. Для обеспечения работы устройства в диапазоне температур +40 - -40°С в зазор между шарами вводят органическую смазку (Циатим).
На Фиг. 3 показана топология пленочных слоев подложки 11: на лицевой стороне расположена линейка из термочувствительных элементов с контактами 12; на обратной стороне подложки размещены пленочный нагреватель 16 и термодатчик 17.
На Фиг. 4 приведена гистерезисная зависимость сопротивления термочувствительного слоя от температуры.
В качестве термочувствительного слоя датчика используется пленка VO2 толщиной 100 нм. Ширина петли температурной гистерезисной пленки VO2 равна 21°С, при этом скачок электропроводности равен 20:1. Путем термостатирования пленки VO2 на уровне 45°С реализуется режим внутренней памяти. Фазовый переход полупроводник-металл (ФППМ) в пленке VO2 имеет гистерезисный характер и протекает в диапазоне 44-69°С.
Устройство работает следующим образом.
Световой луч в форме полосы облучает поверхность термочувствительного элемента, который нагреваясь изменяет свое сопротивление. При движении объекта световой луч перемещается относительно термочувствительных элементов, которые обладают памятью воздействия. Термочувствительные элементы электрически соединены со счетчиком импульсов. Выходной импульс с каждого элемента подсчитывается реверсивным счетчиком. Точность датчика определяется размером термочувствительного элемента.
Пример.
Был изготовлен датчик линейных перемещений, представляющий собой прямоугольный корпус. Внутри корпуса с помощью системы металлических шаров крепится каретка внутри основания с возможностью перемещения вдоль основания. На каретке размещены светодиод L-53SF7C и металлический штырь, с помощью которого происходит механическое соединение перемещаемого объекта и датчика. В полости основания расположена герметичная камера, закрытая прозрачной крышкой. В камере расположена диэлектрическая подложка, лицевая сторона которой покрыта термочувствительными элементами из пленки VOx с электродами из Ni. На обратной стороне подложке размещен пленочный нагреватель из NiCr и термодатчик. С помощью пленочного нагревателя и терморегулятора точность термостатирования термочувствительных полосок датчика составляет ±1°С. Для устойчивой работы датчика требуется обеспечить нагрев термочувствительного слоя на 5°С. Постоянная времени датчика не более 10-4с, при этом облученность термочувствительного для его нагрева на 5°С составляет 40 мДж/мм2. При постоянной засветке термочувствительного слоя облученность для его нагрева на 5°С составляет 8,5 нВт/мм2. Пленочный нагреватель обеспечивает нагрев пленки VO2 до температуры, равной середине петли гистерезиса. Наличие внутренней памяти у термочувствительного слоя теплового датчика на основе пленки VO2 обеспечивает абсолютную фиксацию объекта наблюдения и резко упрощает схему управления.
Схема управления датчиком описана (патент РФ №2297605 Датчик перемещений, МПК G01K 1/00 / А.С. Олейник. Опубл. 20.04.2007).
название | год | авторы | номер документа |
---|---|---|---|
ДАТЧИК ПЕРЕМЕЩЕНИЙ | 2005 |
|
RU2297605C1 |
ТЕПЛОВОЙ ПРИЕМНИК | 2012 |
|
RU2518250C1 |
Способ изготовления пленочного материала на основе смеси фаз VO, где x=1,5-2,02 | 2016 |
|
RU2623573C1 |
Приемник ИК- и ТГц-излучений | 2017 |
|
RU2650430C1 |
Устройство визуализации инфракрасного и терагерцового излучений | 2016 |
|
RU2638381C1 |
УСТРОЙСТВО ВИЗУАЛИЗАЦИИ ИНФРАКРАСНОГО И МИЛЛИМЕТРОВОГО ИЗЛУЧЕНИЯ | 2018 |
|
RU2687992C1 |
Радиовизор на основе приемников миллиметрового излучения с пирамидальными рупорными антеннами | 2020 |
|
RU2757359C1 |
МНОГОЭЛЕМЕНТНЫЙ НЕОХЛАЖДАЕМЫЙ МИКРОБОЛОМЕТРИЧЕСКИЙ ПРИЕМНИК | 2003 |
|
RU2260875C2 |
ТЕПЛОВОЙ ПРИЕМНИК ИЗЛУЧЕНИЯ | 2011 |
|
RU2456559C1 |
ТЕПЛОВОЙ ПРИЕМНИК ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ | 2009 |
|
RU2397458C1 |
Изобретение относится к оптическим датчикам, предназначенным для измерения линейных перемещений объекта наблюдения. Датчик линейных перемещений содержит источник света и подложку. На последней размещены две прямолинейные шкалы в виде первого и второго рядов полосок, разделенных общей проводящий шиной. Полоски выполнены из материала с гистерезисной зависимостью сопротивления от температуры. Ряды полосок смещены относительно друг друга на одну полоску. Каждая из последних имеет сигнальный вывод. На другой стороне подложки расположены пленочные нагреватель и термопара. Термочувствительные полоски подключены к аналоговому коммутатору, входящему в интерфейс измерительной системы. Световая полоса излучения по высоте равна вертикальному размеру двойной шкалы из термочувствительных полосок. При этом подложка установлена в герметичной камере с прозрачной боковой стенкой, на верхней и нижней гранях которой выполнены выступы с продольными пазами. Источник излучения установлен на подвижной каретке, закрепленной с возможностью перемещения по пазам выступов с помощью расположенных в этих пазах шариков, закрепленных на верхней и нижней гранях каретки. Технический результат - повышение точности измерения за счет механической связи датчика с объектом наблюдения, получение компактной конструкции, которая может использоваться автономно в полевых условиях. 2 з.п. ф-лы, 4 ил.
1. Датчик линейных перемещений, содержащий источник света и подложку, на которой размещены две прямолинейные шкалы в виде первого и второго рядов полосок, разделенных общей проводящий шиной, выполненных из материала с гистерезисной зависимостью сопротивления от температуры, ряды полосок смещены относительно друг друга на одну полоску, каждая полоска имеет сигнальный вывод, на другой стороне подложки расположены пленочные нагреватель и термопара, термочувствительные полоски подключены к аналоговому коммутатору, входящему в интерфейс измерительной системы, световая полоса излучения по высоте равна вертикальному размеру двойной шкалы из термочувствительных полосок, отличающийся тем, что подложка установлена в герметичной камере с прозрачной боковой стенкой, на верхней и нижней гранях которой выполнены выступы с продольными пазами, источник излучения установлен на подвижной каретке, закрепленной с возможностью перемещения по пазам выступов с помощью расположенных в этих пазах шариков, закрепленных на верхней и нижней гранях каретки.
2. Датчик линейных перемещений по п. 1, отличающийся тем, что термочувствительные полоски выполнены на основе пленки VOx.
3. Датчик линейных перемещений по п. 1, отличающийся тем, что внутри камеры находится плата со схемой управления, на верхней поверхности камеры размещены цифровой индикатор и элементы управления и сигнализации.
Автоматическая линия для обработки колец | 1959 |
|
SU131195A1 |
Термический датчик перемещения | 1987 |
|
SU1474451A1 |
RU 2011142085 A, 27.04.2013 | |||
US 7705585 B2, 27.04.2010 |
Авторы
Даты
2015-09-20—Публикация
2014-06-17—Подача