СВЕРХВЫСОКОЧАСТОТНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ ДРЕВЕСИНЫ Российский патент 2015 года по МПК G01N9/24 

Описание патента на изобретение RU2564822C1

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известен способ определения плотности древесины, предусматривающий измерение выталкивающей силы воды, действующей на образец древесины, погруженный в воду. Этот способ (см. описание изобретения SU №569897 A, 1977) включает взвешивание образца на воздухе и предварительное замачивание образца в воде. После этого через фиксированные интервалы времени измеряют изменения выталкивающей силы воды, действующей на образец в момент его погружения в воду и выталкивающей силы воды, действующей на образец в течение определенного времени после погружения образца в воду. В результате разделение действующей на образец выталкивающей силы, равной весу вытесненной жидкости, на плотность воды дает возможность определить плотный объем данного образца. Согласно данному способу по величине деления веса образца до его погружения в воду и найденного плотного объема образца через выталкивающие силы воды определяют плотность древесины.

Недостатком этого известного технического решения является сложность процедуры измерения величин выталкивающих сил воды, действующих на погруженный в воду образец древесины.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип способ, реализуемый сверхвысокочастотным устройством (см. А.Л. Гутман, Гончаров, О.П. Иванова и др. Измерение плотности и толщины древесностружечных плит СВЧ-методом. Известия высш. учебн. заведений. Лесной журнал №1, 1985, стр. 69-73). В этом устройстве, содержащем клистронный СВЧ генератор, снабженный вентилем, делитель мощности, развязывающий вентиль, настроенные аттенюатор и фазовращатель, отсчетный фазовращатель, рупорные антенны, двойной волноводный тройник с детекторной камерой и усилитель, перед измерением проводят балансировку плеч измерительной схемы с помощью настроенных фазовращателя и аттенюатора. Затем помещают между рупорными антеннами исследуемый образец древесины и проводят балансировку схемы посредством отсчетного фазовращателя. Приращение фазового сдвига в этом случае, вычисленное при отсутствии образца и его наличии между антеннами, далее при постоянном значении влажности исследуемого образца древесины используется для определения плотности контролируемой среды.

Недостатком этого способа можно считать сложность процедуры измерения, связанную с необходимой балансировкой плеч измерительной схемы и вычислением фазового сдвига.

Техническим результатом заявляемого технического решения является упрощение процедуры определения плотности вещества.

Технический результат достигается тем, что в сверхвысокочастотном способе определения плотности древесины, включающем зондирование образца древесины электромагнитными волнами, принимают пару ортогонально поляризованных волн, вычисляют скорости распространения этих волн при их прохождении через образец древесины, помещают контролируемый образец древесины в электрическое поле, принимают возникающую за счет искусственной анизотропии поляризованную волну, распространяющуюся параллельно силовым линиям зондирующей волны, вычисляют изменение показателя преломления этой волны при ее прохождении через образец материала и о плотности ρ древесины судят по формуле

ρ=(3Kλ2M-3M)/(AKλ2+2А),

где М - молекулярная масса вещества; λ - длина зондирующей волны;

А=4πNα,

где N - число Авогадро; α - поляризуемость молекул вещества;

К=υпар2В2Е4/(υпарпер)2, где В - коэффициент, зависящий от свойства контролируемой среды, Е - напряженность электрического поля, υпар и υпер - скорости распространения волн, поляризованных параллельно и перпендикулярно силовым линям зондирующей волны соответственно.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что измерение скоростей распространения ортогонально поляризованных волн при естественной анизотропии и разности показателей преломления ортогонально поляризованных волн при искусственной анизотропии в контролируемом образце древесины дает возможность определить плотность древесины.

Наличие в заявляемом способе совокупности перечисленных существующих признаков, позволяет решить задачу определения плотности древесины на основе вычисления скоростей распространения ортогонально поляризованных волн и разности показателей преломления ортогонально поляризованных волн при естественной и искусственной анизотропии древесины с желаемым техническим результатом, т.е. упрощением процедуры определения плотности древесины.

На чертеже представлена функциональная схема устройства, реализующего предлагаемый способ.

Данное устройство содержит генератор электромагнитных колебаний 1, элемент ввода электромагнитных колебаний в образец древесины 2, первый элемент вывода поляризованной волны 3, второй элемент вывода

на величину λBE2. А что касается показателя преломления волны по линии диаметра изделия (направление электрического поля зондирующей волны ортогонально внешнему электрическому полю), то он останется неизменным. В предлагаемом способе допускается, что показатели преломления поляризованных волн при естественной и искусственной анизотропии равны, т.е. скорости распространения поляризованных волн при естественной и искусственной анизотропии в изделии можно считать равными. В силу этого можно принимать, что υпар и υпер отображают скорости распространения ортогонально поляризованных волн при естественной и искусственной анизотропии в образце древесины соответственно. В соответствии с этим ввиду того, что Δn=λBE2 (при искусственной анизотропии) для υпар можно записать

υпар=c/(n-λВЕ2) (3).

Совместное преобразование выражений (1) и (3) дает возможность записать, что

n=υпарλBE2/(υпарпер) (4).

Известно, что показатель преломления n можно вычислить как

n = ε μ ,

где ε - диэлектрическая проницаемость вещества, µ - магнитная проницаемость вещества. При условии µ=1 формулу (4) с учетом последнего выражения можно переписать как

ε=λ2парλBE2)2/(υпарпер)2.

Обозначим K=(υпарBE2)2/(υпарпер)2. Тогда для ε получаем

ε=Кλ2.

Из формулы Клаузиуса-Моссотти

(ε-1)М/(ε+2)ρ=4πNα/3,

устанавливающей зависимость между диэлектрической проницаемостью ε и плотностью ρ слабополярных веществ, к которым с определенной точностью можно отнести древесину, для плотности контролируемой среды можно записать

ρ=(3εМ-3М)/(4πNαε+8πNα).

Здесь М - молекулярная масса вещества, N - число Авогадро, α - поляризуемость молекул вещества.

После обозначения А=4πNα последняя формула принимает вид:

ρ=(3εМ-3М)/(Аε+2А).

В последнюю формулу вместо ε если поставить Kλ2, то для плотности образца древесины получим:

ρ=(3Kλ2М-3М)/(АКλ2+2А) (5).

Из последней формулы вытекает, что если измерить величины скоростей υпар, υпер и вычислить Δn (изменение показателя преломления) при искусственной анизотропии изделия, то при постоянных значениях М, N, α, λ, В и Е можно определить плотность контролируемого изделия.

В устройстве, реализующем данный способ, с выхода генератора электромагнитных колебаний 1 сигнал посредством элемента ввода 2 направляют по оси высоты изделия 12. В этом случае необходимым условием для поляризации зондирующей волны за счет естественной анизотропии является параллельность направления распространения зондирующей электромагнитной волны с направлением естественной анизотропии в контролируемом изделии. Здесь принимается, что естественная анизотропия в изделии проявляется по направлению его высоты. Зондирование изделия приводит к возникновению пары ортогонально поляризованных волн. Параллельно к силовым линиям зондирующей волны поляризованную волну принимают первым элементом вывода 3. Волна, поляризованная ортогонально силовым линиям зондирующей волны, принимается вторым элементом вывода 4. После этого сигнал, снимаемый с выхода первого элемента вывода 3, подают на вход первого измерителя скорости 5. В этом блоке измеряется скорость υпар (распространение поляризованной волны параллельно силовым линиям зондирующей волны). Для измерения скорости υпер выходной сигнал второго элемента вывода 4 подают на вход второго измерителя скорости 6 (распространение поляризованной волны перпендикулярно силовым линиям зондирующей волны).

В рассматриваемом случае для приобретения контролируемым изделием искусственной анизотропии изделие помещают в внешнее электрическое поле, которое создаются электродами 7 и 8. При этом внешнее электрическое поле направляют параллельно силовым линиям зондирующей волны. В данном случае принимают параллельно силовым линиям зондирующей волны поляризованную волну, так как по этому направлению (по оси высоты изделия) происходит изменение показателя преломления (распространение поляризованной волны параллельно силовым линиям зондирующей волны за счет искусственной анизотропии). Для приема этой поляризованной волны используют третий элемент вывода 9. С выхода этого элемента вывода сигнал далее поступает на вход вычислителя 10, где получают величину изменения (разности) показателя преломления из-за искусственной анизотропии в данном изделии. После этого сигналы с выходов первого и второго измерителей скоростей и вычислителя подают на вход преобразователя 11, в котором согласно алгоритму (5) вычисляют плотность образца древесины. Таким образом, в предлагаемом техническом решении, использующем эффект поляризации электромагнитных волн при их воздействии на древесину с естественной и искусственной анизотропии, на основе измерения скоростей распространения поляризованных волн и вычисления разности показателей преломления волн можно обеспечить упрощение процедуры определения плотности контролируемого вещества.

Данный способ успешно может быть применен на производстве древесностружечных плит при необходимости измерения их плотности, влажности и толщины.

Похожие патенты RU2564822C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ МАЛОГО ВЛАГОСОДЕРЖАНИЯ НЕФТЕПРОДУКТА В ДИЭЛЕКТРИЧЕСКОМ СОСУДЕ 2015
  • Ахобадзе Гурам Николаевич
RU2594176C1
СПОСОБ ОПРЕДЕЛЕНИЯ НАРУЖНОГО ОБЪЕМА ЦИЛИНДРИЧЕСКОГО ИЗДЕЛИЯ 2013
  • Ахобадзе Гурам Николаевич
RU2545499C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ВЫСОТЫ ПОЛОГО ДРЕВЕСНОГО ЦИЛИНДРИЧЕСКОГО ИЗДЕЛИЯ 2013
  • Ахобадзе Гурам Николаевич
RU2531035C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДИАМЕТРА ДИЭЛЕКТРИЧЕСКОГО ПОЛОГО ЦИЛИНДРИЧЕСКОГО ИЗДЕЛИЯ 2013
  • Ахобадзе Гурам Николаевич
RU2544893C2
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ВНЕШНЕГО ОБЪЕМА ЦИЛИНДРИЧЕСКОГО ПОЛОГО ИЗДЕЛИЯ 2014
  • Ахобадзе Гурам Николаевич
RU2556329C1
СПОСОБ ОПРЕДЕЛЕНИЯ СПЛОШНОСТИ ПОТОКА ЖИДКОСТИ В ТРУБОПРОВОДЕ 2011
  • Ахобадзе Гурам Николаевич
RU2483296C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ ДИЭЛЕКТРИЧЕСКИХ ЖИДКИХ ВЕЩЕСТВ 2009
  • Ахобадзе Гурам Николаевич
RU2404421C1
СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ МЕЖАТОМНЫХ И МЕЖМОЛЕКУЛЯРНЫХ ВЗАИМОДЕЙСТВИЙ И КООРДИНАЦИОННОГО ЧИСЛА АТОМНЫХ И МОЛЕКУЛЯРНЫХ ВЕЩЕСТВ 2005
  • Потапов Алексей Алексеевич
RU2287153C2
СПОСОБ ИЗМЕРЕНИЯ ФАЗОВОГО СДВИГА ПРОЗРАЧНОГО ОПТИЧЕСКИ АНИЗОТРОПНОГО ОБРАЗЦА 2000
  • Лысенко Г.А.
  • Качурин Ю.Ю.
RU2184365C2
СПОСОБ ИССЛЕДОВАНИЯ ПОВЕРХНОСТИ МИКРООБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 1993
  • Кислов В.В.
  • Колесов В.В.
  • Перевощиков В.А.
RU2092863C1

Реферат патента 2015 года СВЕРХВЫСОКОЧАСТОТНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ ДРЕВЕСИНЫ

Предлагаемое техническое решение относится к измерительной технике. Сверхвысокочастотный способ определения плотности древесины включает зондирование образца древесины электромагнитными волнами. Затем принимают пару ортогонально поляризованных волн, вычисляют скорости распространения этих волн при их прохождении через образец древесины, помещают контролируемый образец древесины в электрическое поле. Далее принимают возникающую за счет искусственной анизотропии поляризованную волну, распространяющуюся параллельно силовым линиям зондирующей волны, вычисляют изменение показателя преломления этой волны при ее прохождении через образец материала и о плотности ρ древесины судят по формуле ρ=(3Кλ2М-3M)/(АКλ2+2А), где М - молекулярная масса вещества; λ - длина зондирующей волны; А=4πNα, где N - число Авогадро; α - поляризуемость молекул вещества; К=υпар2В2Е4/(υпарпер)2, где В - коэффициент, зависящий от свойства контролируемой среды, Е - напряженность электрического поля, υпар и υпер - скорости распространения волн, поляризованных параллельно и перпендикулярно силовым линям зондирующей волны соответственно. Техническим результатом является упрощение процедуры определения плотности вещества. 1 ил.

Формула изобретения RU 2 564 822 C1

Сверхвысокочастотный способ определения плотности древесины, включающий зондирование образца древесины электромагнитными волнами, отличающийся тем, что принимают пару ортогонально поляризованных волн, вычисляют скорости распространения этих волн при их прохождении через образец древесины, помещают контролируемый образец древесины в электрическое поле, принимают возникающую за счет искусственной анизотропии поляризованную волну, распространяющуюся параллельно силовым линиям зондирующей волны, вычисляют изменение показателя преломления этой волны при ее прохождении через образец материала и о плотности ρ древесины судят по формуле
ρ=(3Кλ2М-3M)/(АКλ2+2А),
где М - молекулярная масса вещества; λ - длина зондирующей волны;
А=4πNα,
где N - число Авогадро; α - поляризуемость молекул вещества;
K=υпар2В2Е2/(υпарпер)2,
где В - коэффициент, зависящий от свойства контролируемой среды,
Е - напряженность электрического поля, υпар и υпер - скорости распространения волн, поляризованных параллельно и перпендикулярно силовым линям зондирующей волны соответственно.

Документы, цитированные в отчете о поиске Патент 2015 года RU2564822C1

А.Л
Гутман и др
Измерение плотности и толщины древесностружечных плит СВЧ-методом
Известия высш
учебн
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Способ приготовления пищевого продукта сливкообразной консистенции 1917
  • Александров К.П.
SU69A1
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ ДРЕВЕСИНЫ 2010
  • Коварская Елена Зеликовна
  • Черноглазов Виктор Сергеевич
  • Воронин Андрей Анатольевич
  • Смирнова Елена Викторовна
  • Симоненко Антон Анатольевич
  • Московенко Игорь Борисович
RU2449265C1
Способ определения плотности древесины 1975
  • Недосекин Константин Иванович
  • Шляпников Алексей Петрович
SU569897A1
CN 103991111 A, 20.08.2014
CN 201026640 Y, 27.02.2008

RU 2 564 822 C1

Авторы

Ахобадзе Гурам Николаевич

Даты

2015-10-10Публикация

2014-11-10Подача