Изобретение относится к технике измерения теплофизических параметров электронных компонентов и может быть использовано для контроля теплового сопротивления при разработке и производстве нанотранзисторов, нанорезисторов и других компонентов наноэлектроники.
Параметры разрабатываемых в настоящее время нанотранзисторов и других компонентов наноэлектроники очень чувствительны к изменению их температуры. При малых значениях теплоемкости компонентов наноэлектроники небольшая рассеиваемая мощность может вызвать существенный перегрев их активной области. Это требует контроля теплового сопротивления, характеризующего степень перегрева активной области компонента при единичной рассеиваемой мощности. Тем не менее, средств измерения теплового сопротивления компонентов наноэлектроники в настоящее время не существует (Афонский А.А., Дьяконов В.П. Электронные измерения в нанотехнологиях и микроэлектронике - М.: ДМК Пресс, 2011. С. 688).
Среди существующих способов измерения теплового сопротивления электронных компонентов известен способ измерения теплового сопротивления переход-корпус диодов СВЧ (ГОСТ 19656, 18-84 Диоды полупроводниковые СВЧ. Методы измерения теплового сопротивления переход-корпус и импульсного теплового сопротивления), заключающийся в том, что через объект пропускают импульсы греющей мощности фиксированной длительности и амплитуды, а в промежутках между импульсами измеряют изменение температурочувствительного параметра UТЧП - прямого напряжения полупроводникового диода при пропускании через него малого измерительного тока. Прямое напряжение полупроводникового диода при пропускании через него малого измерительного тока линейно зависит от температуры, что позволяет косвенно измерить температуру перехода, предварительно определив температурный коэффициент напряжения.
Недостатком способа является низкая точность, обусловленная большой погрешностью измерения импульсного напряжения UТЧП(t) из-за влияния переходных тепловых и электрических процессов при переключении полупроводникового диода из режима разогрева в режим измерения.
Наиболее близким по технической сущности к заявленному изобретению (прототипом) является способ измерения теплового импеданса полупроводниковых диодов (см. патент РФ №2402783. Способ измерения теплового импеданса полупроводниковых диодов, Б.И. №30, 2010 г.), суть которого заключается в следующем. Через полупроводниковый диод в прямом направлении пропускают последовательность импульсов греющего тока, длительность τ которых изменяется по гармоническому закону
где τ0 - средняя длительность импульсов; а - коэффициент модуляции; ω - частота модуляции. Период следования импульсов Тсл и амплитудное значение греющего тока Iгр на полупроводниковом диоде поддерживают постоянными. В промежутках между импульсами греющего тока через диод пропускают малый измерительный ток Iизм, измеряют температурочувствительный параметр UТЧП - прямое напряжение на p-n-переходе и при известном температурном коэффициенте напряжения КТ определяют изменения температуры p-n-перехода T(t), вызванные пропусканием через диод широтно-импульсно модулированных импульсов греющего тока
Среднюю за период следования Тсл греющую мощность определяют по формуле:
ге - среднее значение греющей мощности; Uгр - напряжение на объекте измерения на вершине греющих импульсов;
Р1=Рср·а - амплитуда переменной составляющей греющей мощности.
По результатам вычисления амплитуд первых гармоник температуры T1(ω) p-n-перехода и греющей мощности Р1(ω) определяют тепловое сопротивление RT(ω) на частоте модуляции ω по формуле
Недостатком прототипа является то, что при его применении для измерения теплового сопротивления компонентов наноэлектроники появляется значительная погрешность, обусловленная тем, что значение измерительного тока Iизм в паузе между греющими импульсами не является пренебрежимо малым по сравнению с амплитудным значением греющего тока Iгр, в результате чего амплитуда первой гармоники греющей мощности P1 и, как следствие, тепловое сопротивление RT определяются с существенной погрешностью.
Технический результат - повышение точности измерения теплового сопротивления компонентов наноэлектроники.
Технический результат достигается тем, что, как и в прототипе, через объект измерения пропускают последовательность импульсов греющего тока амплитудой Iгр и постоянным периодом следования Тсл, а в паузах между ними измеряют температурочувствительный параметр UТЧП при постоянном значении Iизм - величине тока через объект измерения в паузе между греющими импульсами. В качестве температурочувствительного параметра может быть использовано, например, электрическое сопротивление жгутов углеродных нанотрубок, которое линейно зависит от температуры (Z.J. Han, К. Ostrikov. Controlled electronic transport in single-walled carbon nanotube networks // Applied Physics Letters 2010, 96, 233115). По измеренным значениям UТЧП - напряжения на объекте измерения в паузе между греющими импульсами и Uгр - напряжения на объекте измерения на вершине греющих импульсов вычисляют амплитуды первых гармоник температуры T1 и рассеиваемой мощности Р1, отношение которых определяет тепловое сопротивление объекта измерения. В отличие от прототипа, в котором измерительный ток Iизм считают пренебрежимо малым по сравнению с греющим током Iгр, в заявляемом изобретении учитывают величину рассеиваемой мощности в паузе между греющими импульсами при пропускании через объект измерительного тока Iизм и расчет средней за период следования Тсл греющей мощности осуществляют по формуле
где Рср - среднее значение греющей мощности, которое с учетом (1) вычисляют по формуле
P1 - амплитуда первой гармоники переменной составляющей греющей мощности, которую с учетом (1) вычисляют по формуле
При расчете амплитуды первой гармоники P1 переменной составляющей греющей мощности используют допущение, что вариации напряжения на объекте, вызванные циклическим изменением его температуры, существенно меньше напряжения Uгр в момент протекания греющего тока (на вершине греющего импульса) и напряжения UТЧП в паузе между греющими импульсами, что позволяет при расчете Р1 по формуле (5) принять напряжения Uгр и UТЧП постоянными для всех греющих импульсов.
Зависимость тока I через объект измерения от времени представлена на фиг. 1а. Широтно-импульсная модуляция греющего тока Iгр, осуществляемая по гармоническому закону, вызывает соответствующие изменения рассеиваемой в объекте мощности график которой представлен на фиг. 1б. Модуляция греющей мощности вызывает соответствующие изменения температуры T(t) объекта измерения, сдвинутые по фазе относительно мощности (фиг. 1в). Изменение температуры вызывает соответствующие изменения температурочувствительного параметра UТЧП(t), например напряжения на жгуте из углеродных нанотрубок при протекании через него постоянного измерительного тока Iизм. Зависимость температурочувствительного параметра UТЧП(t) от времени представлена на фиг. 1г.
Для измерения теплового сопротивления компонентов наноэлектроники, например жгутов из углеродных нанотрубок, через объект пропускают последовательность широтно-импульсно модулированных импульсов греющего тока Iгр с гармоническим законом модуляции и постоянным периодом следования Тсл, измеряют напряжение Uгр на объекте измерения на вершине греющих импульсов и напряжение UТЧП в паузе между ними при протекании через объект измерительного тока Iизм, по формуле (5) определяют амплитуду P1 первой гармоники греющей мощности, а по формуле (2) - изменение температуры объекта T(t), затем с помощью Фурье-преобразования вычисляют амплитуду T1 первой гармоники переменной составляющей температуры объекта, после чего с помощью формулы (3) определяют тепловое сопротивление RT(ω) на частоте модуляции греющей мощности ω.
Предлагаемый способ может быть реализован с помощью устройства, структурная схема которого показана на фиг. 2. Устройство содержит источник 1 измерительного тока; формирователь 2 греющих импульсов, управляемый микроконтроллером 3; аналого-цифровой преобразователь 4, вход которого соединен с объектом измерения 5, а выход - с микроконтроллером 3.
Способ осуществляют следующим образом. С выхода формирователя 2 греющих импульсов на объект измерения 5 поступает заданное микроконтроллером 3 количество импульсов греющего тока Iгр, период следования Тсл которых постоянный, а длительность модулируют по гармоническому закону. Измеряют напряжение Uгр на вершине греющего импульса, а в паузах между греющими импульсами измеряют температурочувствительный параметр - напряжение UТЧП на объекте 5, возникающее при протекании через него измерительного тока Iизм, сформированного источником 1. Напряжение UТЧП с помощью аналого-цифрового преобразователя 4 преобразуют в цифровой код, поступающий в микроконтроллер 3, в результате чего в памяти микроконтроллера 3 формируют массив значений {UТЧП}, который затем преобразуют в массив температур {Т}. С помощью Фурье-преобразования вычисляют амплитуду T1 первой гармоники переменной составляющей температуры объекта. Используя измеренные значения напряжений на вершине греющих импульсов Uгр и в паузах между ними UТЧП, вычисляют амплитуду Р1 первой гармоники греющей мощности и далее определяют тепловое сопротивление объекта, равное отношению амплитуд первых гармоник температуры Т1 и греющей мощности Р1.
Повышение точности измерения теплового сопротивления компонентов наноэлектроники в заявленном способе достигается за счет того, что в отличие от прототипа, в нем при расчете амплитуды P1 первой гармоники греющей мощности учтена тепловая мощность, рассеиваемая в объекте в паузе между греющими импульсами при протекании через него измерительного тока.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА ПОЛУПРОВОДНИКОВЫХ ДИОДОВ С ИСПОЛЬЗОВАНИЕМ ПОЛИГАРМОНИЧЕСКОЙ МОДУЛЯЦИИ ГРЕЮЩЕЙ МОЩНОСТИ | 2012 |
|
RU2507526C1 |
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС МОЩНЫХ МДП-ТРАНЗИСТОРОВ | 2014 |
|
RU2572794C1 |
Способ измерения теплового импеданса полупроводниковых диодов с использованием амплитудно-импульсной модуляции греющей мощности | 2016 |
|
RU2630191C1 |
Способ измерения компонент теплового сопротивления мощных полупроводниковых приборов | 2016 |
|
RU2654353C1 |
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ | 2016 |
|
RU2624406C1 |
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА СВЕТОДИОДОВ | 2013 |
|
RU2556315C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ЦИФРОВЫХ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ | 2011 |
|
RU2490657C2 |
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА ПОЛУПРОВОДНИКОВЫХ ДИОДОВ | 2009 |
|
RU2402783C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА ЦИФРОВЫХ КМОП ИНТЕГРАЛЬНЫХ МИКРОСХЕМ | 2012 |
|
RU2504793C1 |
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС И ТЕПЛОВОЙ ПОСТОЯННОЙ ВРЕМЕНИ ПЕРЕХОД-КОРПУС ПОЛУПРОВОДНИКОВОГО ИЗДЕЛИЯ | 2022 |
|
RU2787328C1 |
Изобретение относится к технике измерения теплофизических параметров компонентов наноэлектроники, таких как нанотранзисторы, нанорезисторы и др.. Сущность: способ заключается в пропускании через объект измерения последовательности импульсов греющего тока с постоянным периодом следования и длительностью, изменяющейся по гармоническому закону, измерении в паузах температурочувствительного параметра - напряжения на объекте при пропускании через него измерительного тока и определении изменения температуры объекта, вызванной модуляцией греющей мощности. Далее с помощью Фурье-преобразования вычисляют амплитуду первой гармоники температуры объекта, после чего определяют тепловое сопротивление как отношение амплитуд первых гармоник температуры и греющей мощности. При этом при определении амплитуды первой гармоники греющей мощности учитывают величину рассеиваемой мощности в паузе между греющими импульсами при пропускании через объект измерительного тока. Технический результат: повышение точности. 2 ил.
Способ измерения теплового сопротивления компонентов наноэлектроники с использованием широтно-импульсной модуляции греющей мощности, заключающийся в том, что через объект измерения пропускают последовательность широтно-импульсно модулированных импульсов греющего тока Iгр с гармоническим законом модуляции и постоянным периодом следования Тсл, измеряют напряжение Uгр на объекте измерения на вершине греющих импульсов и напряжение UТЧП в паузе между ними при протекании через объект измерения измерительного тока Iизм, определяют амплитуду Р1 первой гармоники греющей мощности и изменение температуры объекта измерения T(t), затем с помощью Фурье-преобразования вычисляют амплитуду Т1 первой гармоники переменной составляющей температуры объекта измерения, после чего определяют тепловое сопротивление объекта измерения как отношение амплитуд первых гармоник температуры и греющей мощности, отличающийся тем, что учитывают величину рассеиваемой мощности в паузе между греющими импульсами при пропускании через объект измерения измерительного тока, и расчет амплитуды Р1 первой гармоники греющей мощности осуществляют по формуле
где а - коэффициент модуляции импульсов, τ0 - средняя длительность импульсов, Тсл - период следования импульсов, Iгр - амплитуда импульсов греющего тока через объект измерения, Uгр - напряжение на объекте измерения на вершине греющих импульсов, Iизм - величина тока через объект измерения в паузе между греющими импульсами, UТЧП - напряжение на объекте измерения в паузе между греющими импульсами.
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА ПОЛУПРОВОДНИКОВЫХ ДИОДОВ | 2009 |
|
RU2402783C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОВОГО ИМПЕДАНСА ЦИФРОВЫХ КМОП ИНТЕГРАЛЬНЫХ МИКРОСХЕМ | 2012 |
|
RU2504793C1 |
Способ измерения теплового сопротивления переход-корпус цифровых интегральных микросхем | 1985 |
|
SU1310754A1 |
JP 5203698 А, 10.08.1993 | |||
CN 102565559 А), 11.07.2012 |
Авторы
Даты
2015-10-20—Публикация
2014-04-21—Подача