СПОСОБ БЕСКОНТАКТНОЙ ДИСТАНЦИОННОЙ ДИАГНОСТИКИ СОСТОЯНИЯ ВЫСОКОВОЛЬТНЫХ ПОЛИМЕРНЫХ ИЗОЛЯТОРОВ Российский патент 2015 года по МПК G01R31/12 

Описание патента на изобретение RU2566391C1

Изобретение относится к области электроизмерительной техники и может быть использовано для дистанционного контроля рабочего состояния высоковольтных полимерных изоляторов на основе измерения и анализа наборов характеристик частичных разрядов (ЧР).

Известны способы бесконтактной дистанционной диагностики состояния высоковольтных изоляторов путем измерения характеристик импульсов частичных разрядов с помощью приема электромагнитного излучения (патенты РФ №№ 2058559, 2359280) или акустического излучения (патент США № 4439723, патент РФ № 2187438; В.П. Вдовико «Частичные разряды в диагностировании высоковольтного оборудования». Новосибирск, наука 2007).

Особенностью этих способов является обработка сигналов частичных разрядов путем подсчета среднего количества импульсов и их интенсивности за определенные промежутки времени, а также изучение формы спектра отдельных частичных разрядов.

Известен способ дистанционной акустоэлектромагнитной диагностики состояния линейной изоляции контактной сети переменного тока железнодорожного транспорта, посредством совместной регистрации акустического и электромагнитного излучения частичных разрядов, возникающих в изоляторах контактной сети, при этом дистанционно выявляются гирлянды с неисправными изоляторами по таким параметрам как число импульсов частичных разрядов и интенсивность их излучения с одновременным анализом спектральных характеристик регистрируемого излучения в частотном диапазоне до 200 МГц (патент РФ № 2365928, МПК G01R 31/00, 27.08.2009).

Недостатком известных способов является отсутствие реальной оценки интенсивности частичных разрядов (кажущегося заряда по ГОСТу 20074-83), поскольку в упомянутом ГОСТе метод расчета интенсивности справедлив только для контактного метода измерения характеристик частичных разрядов. До настоящего времени, как следует из проработанных нами источников информации, не предложено каких-либо способов точного определения соотношения между сигналами ЧР и реальным зарядом на дефекте, поскольку при электромагнитном дистанционном способе интенсивность сигналов, принимаемых антенной приемника, зависит от многих факторов: расстояние от изолятора, размер дефекта, фаза переменного напряжения.

Прототипом является способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов, при котором осуществляют пассивный прием электромагнитным и акустическим приемниками одновременно электромагнитного и акустического излучений от частичных разрядов, индикацию и совместную компьютерную обработку сигналов, отличающийся тем, что совместную компьютерную обработку сигналов осуществляют путем определения в каждом из дискретных интервалов фазового напряжения средних значений числа и интенсивности импульсов реального заряда, которые превышают допустимый порог для возникновения дефектов или их развития, при этом вначале электромагнитный и акустический приемники предварительно градуируют по чувствительности с учетом расстояния от источника измерения, затем для каждого типа полимерных изоляторов контактным способом определяют предельные значения интенсивности и числа частичных разрядов, характеризующие дефектное состояние высоковольтных полимерных изоляторов, далее регистрируют электромагнитные и акустические сигналы излучения от частичных разрядов, синхронизированные с фазой высокого напряжения, накапливают их по узким фазовым интервалам, затем это фазовое распределение числа импульсов и интенсивности сравнивают с ранее записанным распределением аналогичных сигналов для эталонного полимерного изолятора, выделяют сигналы, превышающие уровень, безопасный для нормального функционирования полимерных изоляторов, а о состоянии высоковольтных полимерных изоляторов судят по трем диагностическим признакам, отличающим исправные полимерные изоляторы от дефектных: повышение числа частичных разрядов и их интенсивности за дискретный фазовый интервал; наличие мощных частичных разрядов, превышающих по интенсивности средние значения за фазовый интервал; сдвиг фазовых интервалов числа частичных разрядов с наибольшими интенсивностями (патент РФ № 2483315, МПК G01R 31/12, 27.05.2013).

Основным недостатком способа-прототипа является отсутствие возможности различать частичные разряды, обусловленные внутренними и поверхностными дефектами, что не позволяет точно определить характер повреждений высоковольтных полимерных изоляторов.

Задачей предлагаемого изобретения является обеспечение одновременного измерения внутренних и поверхностных частичных разрядов за определенные дискретные фазовые интервалы высокого напряжения.

Технический результат достигается тем, что в способе бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов, при котором осуществляют пассивный прием электромагнитным приемником электромагнитного излучения от частичных разрядов, согласно предлагаемому изобретению, одновременно с пассивным приемом электромагнитным приемником электромагнитного излучения от частичных разрядов осуществляют пассивный прием инфракрасным приемником ИК излучений от частичных разрядов, индикацию и совместную компьютерную обработку электромагнитных и ИК сигналов, синхронизацию электромагнитных и ИК сигналов с фазой высокого напряжения, накопление их по узким фазовым интервалам, осуществляют расчеты реального заряда и определяют среднее количество импульсов частичных разрядов в каждом из дискретных интервалов фазового напряжения, электромагнитные и ИК сигналы частичных разрядов регистрируют на двух источниках - на эталонном источнике внутренних и поверхностных частичных разрядов, а также на полимерном изоляторе с внутренними и поверхностными дефектами, причем электромагнитный и ИК приемники предварительно градуируют по чувствительности с учетом расстояния от источника измерения для определения среднего количества импульсов частичных разрядов и величины реального заряда, при этом электромагнитным приемником регистрируют сигналы излучения от внутренних частичных разрядов, а ИК приемником регистрируют сигналы от поверхностных частичных разрядов, а о состоянии высоковольтных полимерных изоляторов судят по трем диагностическим признакам, отличающим исправные полимерные изоляторы от дефектных: появление одиночных частичных разрядов и постепенное увеличение количества импульсов частичных разрядов за дискретный фазовый интервал напряжения со средним значением реального заряда 100 пКл, характерных для внутренних дефектов и начала внутреннего разрушения полимерного изолятора; наличие серийно идущих один за другим частичных разрядов со средним значением реального заряда 100 пКл, являющееся признаком предпробойной ситуации, обусловленной внутренними дефектами полимерного изолятора; увеличение за дискретный фазовый интервал напряжения количества импульсов мощных поверхностных частичных разрядов со средним значением реального заряда 2000 пКл, являющееся признаком предпробойной ситуации, за счет разрушения поверхности полимерного изолятора.

При этом регистрируют в среднем за один период фазового напряжения в интервале 240-250 градусов 82 импульса частичных разрядов со средним значением реального заряда 100 пКл, что является признаком предпробойной ситуации, обусловленной внутренним разрушением полимерного изолятора.

Сущность изобретения поясняется чертежом, на котором изображена принципиальная схема устройства для осуществления предлагаемого способа бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов.

Цифрами на чертеже обозначены:

1 - широкополосная электромагнитная антенна,

2 - ИК датчик,

3 - широкополосный усилитель,

4 - предусилитель ИК сигнала,

5 - аналогово-цифровой преобразователь,

6 - аналогово-цифровой преобразователь,

7 - устройство обработки сигналов с блоком отображения информации и блоком памяти (персональный компьютер),

8 - устройство обработки сигналов с блоком отображения информации и блоком памяти (микропроцессорное устройство с ЖК дисплеем),

9 - двухканальный осциллограф.

Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов осуществляют посредством следующих операций.

Используя широкополосную электромагнитную антенну (1) и ИК датчик (2) принимают сигналы частичных разрядов в виде электромагнитных импульсов и ИК излучения соответственно, усиливают их с помощью широкополосного усилителя 3 и предусилителя ИК сигнала 4.

Затем импульсы частичных разрядов поступают в аналогово-цифровые преобразователи (5,6) и далее поступают в устройство (7) обработки сигналов с блоком отображения информации и блоком памяти (персональный компьютер) и микропроцессорное устройство с ЖК дисплеем (8). Непосредственное отображение усиленных сигналов внутренних частичных разрядов осуществляется двухканальным осциллографом (9).

Электромагнитный приемник с широкополосной электромагнитной антенной 1 и ИК приемник с ИК датчиком 2 предварительно градуируют по чувствительности с учетом расстояния от источника измерения. Далее, используя широкополосную электромагнитную антенну 1 и ИК датчик 2, регистрируют сигналы электромагнитного и ИК излучений от частичных разрядов, синхронизированные с фазой высокого напряжения, накапливают их по узким фазовым интервалам в блоке памяти (персональном компьютере).

Электромагнитные и ИК сигналы частичных разрядов регистрируют на двух источниках - на эталонном источнике внутренних и поверхностных частичных разрядов, а также на полимерном изоляторе с внутренними и поверхностными дефектами.

Выделяют с помощью определенной компьютерной программы сигналы внутренних и поверхностных частичных разрядов, выявляют изоляторы с дефектами и определяют возможность их дальнейшего функционирования.

Полученные во время проведения экспериментов результаты позволили разработать три диагностических признака, отличающих исправные полимерные изоляторы от дефектных:

появление одиночных частичных разрядов и постепенное увеличение количества импульсов частичных разрядов за дискретный фазовый интервал напряжения со средним значением реального заряда 100 пКл, характерных для внутренних дефектов и начала внутреннего разрушения полимерного изолятора;

наличие серийно идущих один за другим частичных разрядов со средним значением реального заряда 100 пКл, являющееся признаком предпробойной ситуации, обусловленной внутренними дефектами полимерного изолятора;

увеличение за дискретный фазовый интервал напряжения количества импульсов мощных поверхностных частичных разрядов со средним значением реального заряда 2000 пКл, являющиеся признаком предпробойной ситуации, за счет разрушения поверхности полимерного изолятора.

При этом регистрируют в среднем за один период фазового напряжения в интервале 240-250 градусов 82 импульса частичных разрядов со средним значением реального заряда 100 пКл, что является признаком предпробойной ситуации, обусловленной внутренним разрушением полимерного изолятора.

Использование предлагаемого способа, по которому для регистрации характеристик частичных разрядов одновременно используют два канала - электромагнитный и инфракрасный, обеспечит одновременное измерение внутренних и поверхностных частичных разрядов за определенные дискретные фазовые интервалы высокого напряжения, что позволит точно определить характер повреждений высоковольтных полимерных изоляторов.

Похожие патенты RU2566391C1

название год авторы номер документа
СПОСОБ БЕСКОНТАКТНОЙ ДИСТАНЦИОННОЙ ДИАГНОСТИКИ СОСТОЯНИЯ ВЫСОКОВОЛЬТНЫХ ПОЛИМЕРНЫХ ИЗОЛЯТОРОВ 2011
  • Голенищев-Кутузов Вадим Алексеевич
  • Голенищев-Кутузов Александр Вадимович
  • Евдокимов Леонид Иванович
  • Черномашенцев Антон Юрьевич
RU2483315C1
Устройство (варианты) и способ определения состояния изолирующих подвесок 2015
  • Петренко Станислав Александрович
  • Титов Дмитрий Евгеньевич
RU2620021C1
СПОСОБ БЕСКОНТАКТНОЙ ДИСТАНЦИОННОЙ ДИАГНОСТИКИ СОСТОЯНИЯ ВЫСОКОВОЛЬТНЫХ ИЗОЛЯТОРОВ 2018
  • Голенищев-Кутузов Александр Вадимович
  • Голенищев-Кутузов Вадим Алексеевич
  • Иванов Дмитрий Алексеевич
  • Марданов Георгий Дамирович
  • Семенников Антон Владимирович
RU2679759C1
СПОСОБ ВЫЯВЛЕНИЯ МЕТАЛЛИЧЕСКИХ И ВОЗДУШНЫХ ВКЛЮЧЕНИЙ В ИЗДЕЛИЯХ ИЗ ПОЛИМЕРНЫХ МАТЕРИАЛОВ 2014
  • Ларченко Анастасия Геннадьевна
  • Филиппенко Николай Григорьевич
  • Лившиц Александр Валерьевич
RU2555493C1
Способ и устройство бесконтактного дистанционного контроля технического состояния высоковольтных линейных изоляторов воздушных линий электропередач 2020
  • Катков Владислав Игоревич
  • Евдокимов Юрий Кириллович
  • Сагдиев Рафаэль Касимович
  • Охоткин Григорий Петрович
RU2753811C1
Устройство для диагностики состояния высоковольтных изоляторов 2019
  • Ахобадзе Гурами Николаевич
RU2726305C1
СПОСОБ БЕСКОНТАКТНОЙ ДИСТАНЦИОННОЙ ДИАГНОСТИКИ СОСТОЯНИЯ ВЫСОКОВОЛЬТНЫХ ИЗОЛЯТОРОВ 2015
  • Голенищев-Кутузов Александр Вадимович
  • Голенищев-Кутузов Вадим Алексеевич
  • Марданов Георгий Дамирович
  • Хуснутдинов Раиль Алексеевич
RU2597962C1
СПОСОБ КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЭЛЕМЕНТОВ ВЫСОКОВОЛЬТНОГО ОБОРУДОВАНИЯ 2015
  • Киншт Николай Владимирович
  • Петрунько Наталья Николаевна
RU2604578C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЦИФРОВОГО ТРАНСФОРМАТОРА ПО ПАРАМЕТРАМ ЧАСТИЧНЫХ РАЗРЯДОВ В ИЗОЛЯЦИИ 2018
  • Литвинов Сергей Николаевич
  • Гусенков Алексей Васильевич
  • Лебедев Владимир Дмитриевич
  • Яблоков Андрей Анатольевич
RU2700368C1
СПОСОБ ДИСТАНЦИОННОЙ АКУСТОЭЛЕКТРОМАГНИТНОЙ ДИАГНОСТИКИ СОСТОЯНИЯ ЛИНЕЙНОЙ ИЗОЛЯЦИИ КОНТАКТНОЙ СЕТИ ПЕРЕМЕННОГО ТОКА ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА 2007
  • Куценко Сергей Михайлович
  • Климов Николай Николаевич
  • Муратов Валерий Илларионович
  • Рындин Илья Иванович
  • Желябин Яков Аркадьевич
RU2365928C1

Иллюстрации к изобретению RU 2 566 391 C1

Реферат патента 2015 года СПОСОБ БЕСКОНТАКТНОЙ ДИСТАНЦИОННОЙ ДИАГНОСТИКИ СОСТОЯНИЯ ВЫСОКОВОЛЬТНЫХ ПОЛИМЕРНЫХ ИЗОЛЯТОРОВ

Изобретение относится к области электроизмерительной техники и может быть использовано для дистанционного контроля рабочего состояния высоковольтных полимерных изоляторов на основе измерения и анализа наборов характеристик частичных разрядов (ЧР). Технический результат: обеспечение возможности одновременного измерения внутренних и поверхностных частичных разрядов за определенные дискретные фазовые интервалы высокого напряжения. Сущность: одновременно с пассивным приемом электромагнитным приемником электромагнитного излучения от частичных разрядов осуществляют пассивный прием инфракрасным приемником ИК излучений от частичных разрядов, индикацию и совместную компьютерную обработку электромагнитных и ИК сигналов, синхронизацию электромагнитных и ИК сигналов с фазой высокого напряжения, накопление их по узким фазовым интервалам. Осуществляют расчеты реального заряда и определяют среднее количество импульсов частичных разрядов в каждом из дискретных интервалов фазового напряжения. Электромагнитные и ИК сигналы частичных разрядов регистрируют на двух источниках - на эталонном источнике внутренних и поверхностных частичных разрядов, а также на полимерном изоляторе с внутренними и поверхностными дефектами. Электромагнитным приемником регистрируют сигналы излучения от внутренних частичных разрядов, а ИК приемником регистрируют сигналы от поверхностных частичных разрядов. О состоянии высоковольтных полимерных изоляторов судят по трем диагностическим признакам, отличающим исправные полимерные изоляторы от дефектных: появление одиночных частичных разрядов и постепенное увеличение количества импульсов частичных разрядов за дискретный фазовый интервал напряжения со средним значением реального заряда 100 пКл, характерных для внутренних дефектов и начала внутреннего разрушения полимерного изолятора; наличие серийно идущих один за другим частичных разрядов со средним значением реального заряда 100 пКл, являющееся признаком предпробойной ситуации, обусловленной внутренними дефектами полимерного изолятора; увеличение за дискретный фазовый интервал напряжения количества импульсов мощных поверхностных частичных разрядов со средним значением реального заряда 2000 пКл, являющееся признаком предпробойной ситуации, за счет разрушения поверхности полимерного изолятора. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 566 391 C1

1. Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов, при котором осуществляют пассивный прием электромагнитным приемником электромагнитного излучения от частичных разрядов, отличающийся тем, что одновременно с пассивным приемом электромагнитным приемником электромагнитного излучения от частичных разрядов осуществляют пассивный прием инфракрасным приемником ИК излучений от частичных разрядов, индикацию и совместную компьютерную обработку электромагнитных и ИК сигналов, синхронизацию электромагнитных и ИК сигналов с фазой высокого напряжения, накопление их по узким фазовым интервалам, осуществляют расчеты реального заряда и определяют среднее количество импульсов частичных разрядов в каждом из дискретных интервалов фазового напряжения, электромагнитные и ИК сигналы частичных разрядов регистрируют на двух источниках - на эталонном источнике внутренних и поверхностных частичных разрядов, а также на полимерном изоляторе с внутренними и поверхностными дефектами, причем электромагнитный и ИК приемники предварительно градуируют по чувствительности с учетом расстояния от источника измерения для определения среднего количества импульсов частичных разрядов и величины реального заряда, при этом электромагнитным приемником регистрируют сигналы излучения от внутренних частичных разрядов, а ИК приемником регистрируют сигналы от поверхностных частичных разрядов, а о состоянии высоковольтных полимерных изоляторов судят по трем диагностическим признакам, отличающим исправные полимерные изоляторы от дефектных: появление одиночных частичных разрядов и постепенное увеличение количества импульсов частичных разрядов за дискретный фазовый интервал напряжения со средним значением реального заряда 100 пКл, характерных для внутренних дефектов и начала внутреннего разрушения полимерного изолятора; наличие серийно идущих один за другим частичных разрядов со средним значением реального заряда 100 пКл, являющееся признаком предпробойной ситуации, обусловленной внутренними дефектами полимерного изолятора; увеличение за дискретный фазовый интервал напряжения количества импульсов мощных поверхностных частичных разрядов со средним значением реального заряда 2000 пКл, являющееся признаком предпробойной ситуации, за счет разрушения поверхности полимерного изолятора.

2. Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов по п.1, отличающийся тем, что регистрируют в среднем за один период фазового напряжения в интервале 240-250 градусов 82 импульса частичных разрядов со средним значением реального заряда 100 пКл, что является признаком предпробойной ситуации, обусловленной внутренним разрушением полимерного изолятора.

Документы, цитированные в отчете о поиске Патент 2015 года RU2566391C1

СПОСОБ БЕСКОНТАКТНОЙ ДИСТАНЦИОННОЙ ДИАГНОСТИКИ СОСТОЯНИЯ ВЫСОКОВОЛЬТНЫХ ПОЛИМЕРНЫХ ИЗОЛЯТОРОВ 2011
  • Голенищев-Кутузов Вадим Алексеевич
  • Голенищев-Кутузов Александр Вадимович
  • Евдокимов Леонид Иванович
  • Черномашенцев Антон Юрьевич
RU2483315C1
СПОСОБ БЕСКОНТАКТНОГО И ДИСТАНЦИОННОГО КОНТРОЛЯ СОСТОЯНИЯ ГИРЛЯНД ИЗОЛЯТОРОВ ВОЗДУШНЫХ ВЫСОКОВОЛЬТНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ 2007
  • Бадретдинов Марат Наилевич
  • Гатауллин Айрат Мухамедович
  • Матухин Вадим Леонидович
  • Губаев Дамир Фатыхович
RU2359280C2
СПОСОБ ДИСТАНЦИОННОЙ ДИАГНОСТИКИ МНОГОЭЛЕМЕНТНОЙ ИЗОЛИРУЮЩЕЙ КОНСТРУКЦИИ 2006
  • Алеев Рафиль Мухтарович
  • Зарипов Дамир Камилевич
RU2305848C1
WO 2007093861 A2, 23.08.2007
US 2013179099 A1, 11.07
Многоступенчатая активно-реактивная турбина 1924
  • Ф. Лезель
SU2013A1
CN 103558528 A, 05.02.2014

RU 2 566 391 C1

Авторы

Гатауллин Айрат Мухамедович

Даты

2015-10-27Публикация

2014-08-28Подача