Изобретение относится к электротехнике и может быть использовано для передачи импульсного сигнала в меандровых линиях печатных плат с дополнительной задержкой и минимальными искажениями формы импульса.
При проектировании высокоскоростной цифровой электроники требуется синхронизация тактируемых сигналов в точках приема. Необходимо, чтобы все трассы, подведенные к точкам приема, обеспечивали одинаковые задержки сигналов. Для этого часто используют меандровые линии. Однако импульсный сигнал в меандре с высокой плотностью проводников, к которой стремятся для уменьшения занимаемой площади, приходит в точку приема искаженным из-за наводок, инициируемых от фронта и спада сигнала на концах проводников меандра. Следствием является неконтролируемое уменьшение задержки в линии и искажение формы импульса. В случае когда задержка в линии меньше требуемой, необходимо увеличивать ее длину, а вместе с тем и площадь, занимаемую на поверхности печатной платы. Таким образом, меандровые линии задержки либо не обеспечивают заданную задержку из-за искажений, либо занимают большую площадь на печатной плате.
Известна меандровая линия задержки из одного витка [Газизов Т.Р. Искажения импульсного сигнала в простых меандровых линиях / Т.Р. Газизов, A.M. Заболоцкий // Инфокоммуникационные технологии. - 2006. - Том. 4, №3. - С.34-38], обеспечивающая прохождение импульса по проводнику без искажений его формы.
Недостатком этого устройства является необходимость двух опорных плоскостей и однородного диэлектрического заполнения между ними.
Наиболее близкой к заявляемому устройству является меандровая линия на основе связанной микрополосковой линии [Фуско В. СВЧ цепи. Анализ и автоматизированное проектирование: Пер. с англ. - М.: Радио и связь, 1990. - 288 с.: ил. ISBN 5-256-00663-0], состоящая из одного опорного проводника, двух параллельных ему и друг другу сигнальных проводников, соединенных между собой на одном конце, и диэлектрической среды.
Недостатками устройства-прототипа являются неконтролируемое уменьшение задержки в линии и искажение формы импульса и наличие искажений формы импульса, проходящего по линии, из-за сильных взаимных связей между полувитками.
Заявляемая меандровая линия с дополнительной задержкой, состоящая из одного опорного проводника, двух параллельных ему и друг другу сигнальных проводников, соединенных между собой на одном конце, и диэлектрической среды, отличается тем, что произведение суммы значений погонных задержек четной и нечетной мод на длину линии больше или равно сумме длительностей фронта, плоской вершины и спада импульса, а значение погонной задержки нечетной моды линии больше разности значения погонной задержки четной моды и значения разности между значением погонной задержки четной или нечетной моды, в случае их равенства, и значением погонной задержки одиночной линии.
Достоинством заявляемой меандровой линии, в отличие от устройства-прототипа, является обеспечение прохождения импульса с дополнительной задержкой и минимальными искажениями его формы.
Технический результат, на достижение которого направлена предлагаемая меандровая линия задержки, - обеспечение дополнительной задержки импульса с минимальными искажениями его формы.
Технический результат прежде всего достигается за счет выбора длины линии таким образом, чтобы значение задержки в меандровой линии было больше или равно сумме длительностей фронта, плоской вершины и спада импульса. При этом условии форма импульса не искажается, хотя перед ним появляется импульс в виде трапеции положительной полярности, а после него - отрицательной. Появившиеся импульсы - это, в терминологии связанных линий, наводка на ближнем конце пассивной линии, амплитуда которой пропорциональна четверти суммы емкостной и индуктивной связей. Но эта наводка не искажает форму импульса. Также для достижения технического результата необходимо, чтобы значение погонной задержки нечетной моды линии было больше разности значения погонной задержки четной моды и значения разности между значением погонной задержки четной или нечетной моды, в случае их равенства, и значением погонной задержки одиночной линии. При этом условии на фронт и спад импульса накладывается наводка отрицательной полярности, которая в терминологии связанных линий является дальней перекрестной помехой, а ее амплитуда пропорциональна четверти разности емкостной и индуктивной связей между сигнальными проводниками. За счет суммирования импульса сигнала положительной полярности и наводки отрицательной полярности в конце меандровой линии наблюдается дополнительная задержка. При этом искажаются фронт и спад импульсного сигнала, но эти искажения незначительны.
На фиг.1а приведен пример поперечного сечения заявляемой линии, когда проводник меандра сверху покрыт одним диэлектрическим слоем. Параметры поперечного сечения: w и t - соответственно ширина и толщина проводника, s - расстояние между проводниками, d - расстояние от края структуры до проводника, hC - толщина слоя подложки, hV - толщина покрывающего слоя, а εrC и εrV - соответственно относительные диэлектрические проницаемости подложки и покрывающего слоя. На фиг.1б приведена эквивалентная схема заявляемой меандровой линии с длиной полувитка l. Линия состоит из двух параллельных проводников 4, 5 в диэлектрическом заполнении, соединенных между собой на одном конце. Один из проводников линии соединен с источником импульсных сигналов, представленным на схеме идеальным источником э.д.с. 1 и внутренним сопротивлением RГ 2. Другой проводник линии соединен с приемным устройством, представленным на схеме сопротивлением RН 3.
Положительный эффект изобретения показан на графиках фиг.3, полученных при моделировании. Значения RГ и RН приняты при моделировании равными 50 Ом, а длительности фронта, плоской вершины и спада импульса - по 100 пс каждая. Также важно отметить, что диэлектрическое заполнение рассматриваемой линии будет меняться только за счет изменения εrV, а остальные геометрические и электрические параметры структуры при этом неизменны.
Параметры поперечного сечения на фиг.2а и длина меандровой линии выбраны таким образом, чтобы выполнялись условия
где τe и τо - значения погонных задержек четной и нечетной мод, l - длина полувитка, tr,
td и tf - длительности фронта, плоской вершины и спада импульса соответственно, а r′ вычисляется по формуле
где τe=o - погонная задержка четной или нечетной моды линии, при условии их равенства, а τ1 - погонная задержка одиночной линии, определяемая по формуле
где L - погонная индуктивность одиночной линии, а С - погонная емкость одиночной линии.
Погонные задержки четной и нечетной мод для симметричной относительно опорного проводника структуры связанных линий передачи вычисляются как [Малютин Н.Д. Многосвязные полосковые структуры и устройства на их основе / Н.Д. Малютин. - Томск: Изд-во Том. ун-та, 1990. - 164 с.]
где С11 и C12, L11 и L12 - соответствующие элементы матриц (коэффициентов электростатической и электромагнитной индукции) L и С.
При условии равенства значений погонных задержек четной и нечетной мод линии слагаемое (L12·C11+L11·C12)=0, тогда
Таким образом, подставляя (7) и (4) в (3), получаем
Для выполнения условия (1) рассмотрим линию, представленную на фиг.1а. Параметры поперечного сечения: w=120 мкм, t=30 мкм, s=150 мкм, d=360 мкм, hС=100 мкм, hV=50 мкм; εrC=4,49; εrV=9,2. Вычисленные матрицы:
Используя (5) и (6), получаем τe=6,59 нс/м, τo=7,023 нс/м. При длине линии l=25 мм произведение суммы погонных задержек четной и нечетной мод сигнала на длину линии составляет 340,3 пс. Сумма длительностей фронта, плоской вершины и спада импульсного сигнала составляет 300 пс. Таким образом, выполняется условие (1).
Для выполнения условия (2) рассмотрим аналогичную меандровую линию, но с εrV=4,79. Для такой линии:
Используя (5) и (6), получаем τe=6,2791 нс/м, τo=6,2790 нс/м. Таким образом, погонные задержки четной и нечетной моды совпадают с точностью до третьего знака.
Для расчета τ1 рассмотрим одиночную линию передачи с аналогичными электрическими и геометрическими параметрами проводника и диэлектриков (фиг.1a). Погонные емкость и индуктивность соответственно С=114,49 пФ/м и L=342,29 нГн/м.
Используя полученные матрицы для меандровой линий и значения погонных емкостей и индуктивностей одиночной линии, по (8) получаем τ′=0,019 нс/м. Подставив значения τe=6,59 нс/м, τo=7,023 нс/м и τ′=0,019 нс/м в (2), получаем 7,023>6,40 (нс/м). Таким образом, условие (2) выполняется.
На фиг.3 показаны формы сигналов в конце меандровой (V3) и одиночной (V2) линий (с одинаковой общей длиной проводника 2l) для эквивалентных схем линий на фиг.1б и 2б. Формы V2 и V3 приведены для двух случаев, когда τe=τo и τo>τe+τ′. Разность задержек между V3 и V2 для τe=τo, отнесенная к l, есть τ′. Значение τ′ по графику составляет 0,048 нс/м, а вычисленного аналитически - 0,019 нс/м. Различие может быть вызвано неточным выполнением условия τe=τo и неполным согласованием линий с нагрузками. Из фиг.3б видно, что заявляемая меандровая линия имеет дополнительную задержку, значение которой больше на Δt, чем задержка в одиночной линии. Таким образом, показан положительный эффект заявляемой линии.
название | год | авторы | номер документа |
---|---|---|---|
ЛИНИЯ ЗАДЕРЖКИ, НЕИСКАЖАЮЩАЯ ИМПУЛЬС | 2013 |
|
RU2556438C1 |
МЕАНДРОВАЯ МИКРОПОЛОСКОВАЯ ЛИНИЯ ЗАДЕРЖКИ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ | 2015 |
|
RU2607252C1 |
МЕАНДРОВАЯ ЛИНИЯ ЗАДЕРЖКИ С ЛИЦЕВОЙ СВЯЗЬЮ, ЗАЩИЩАЮЩАЯ ОТ ЭЛЕКТРОСТАТИЧЕСКОГО РАЗРЯДА | 2022 |
|
RU2796636C1 |
УСОВЕРШЕНСТВОВАННАЯ ЛИНИЯ ЗАДЕРЖКИ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ С УВЕЛИЧЕННОЙ ДЛИТЕЛЬНОСТЬЮ | 2016 |
|
RU2656834C2 |
ЛИНИЯ ЗАДЕРЖКИ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ С УВЕЛИЧЕННОЙ ДЛИТЕЛЬНОСТЬЮ | 2016 |
|
RU2637484C1 |
УСТРОЙСТВО ЗАЩИТЫ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ НА ОСНОВЕ КАСКАДНОГО СОЕДИНЕНИЯ ТРЕХПРОВОДНОГО МОДАЛЬНОГО ФИЛЬТРА И ВИТКА МЕАНДРОВОЙ ЛИНИИ С ЛИЦЕВОЙ СВЯЗЬЮ | 2021 |
|
RU2772794C1 |
МЕАНДРОВАЯ ЛИНИЯ ЗАДЕРЖКИ ИЗ ДВУХ ВИТКОВ С РАЗНЫМИ РАЗНОСАМИ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ | 2015 |
|
RU2606776C1 |
МЕАНДРОВАЯ ЛИНИЯ ЗАДЕРЖКИ С ЛИЦЕВОЙ СВЯЗЬЮ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ С УВЕЛИЧЕННОЙ ДЛИТЕЛЬНОСТЬЮ | 2019 |
|
RU2742049C1 |
УСОВЕРШЕНСТВОВАННАЯ МИКРОПОЛОСКОВАЯ ЛИНИЯ ЗАДЕРЖКИ ИЗ ДВУХ ОТРЕЗКОВ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ | 2023 |
|
RU2813609C1 |
МЕАНДРОВАЯ ЛИНИЯ ЗАДЕРЖКИ ИЗ ДВУХ ВИТКОВ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ | 2015 |
|
RU2600098C1 |
Изобретение относится к электротехнике и может быть использовано в меандровых линиях печатных плат. Достигаемый технический результат - обеспечение дополнительной задержки импульса с минимальными искажениями его формы. Меандровая линия с дополнительной задержкой состоит из одного опорного проводника, двух параллельных ему и друг другу сигнальных проводников, соединенных между собой на одном конце, и диэлектрической среды, при этом произведение суммы значений погонных задержек четной и нечетной мод на длину линии больше или равно сумме длительностей фронта, плоской вершины и спада импульса, а значение погонной задержки нечетной моды линии больше разности значения погонной задержки четной моды и значения разности между значением погонной задержки четной или нечетной моды, в случае их равенства, и значением погонной задержки одиночной линии. 3 ил.
Меандровая линия с дополнительной задержкой, состоящая из одного опорного проводника, двух параллельных ему и друг другу сигнальных проводников, соединенных между собой на одном конце, и диэлектрической среды, отличающаяся тем, что произведение суммы значений погонных задержек четной и нечетной мод на длину линии больше или равно сумме длительностей фронта, плоской вершины и спада импульса, а значение погонной задержки нечетной моды линии больше разности значения погонной задержки четной моды и значения разности между значением погонной задержки четной или нечетной моды, в случае их равенства, и значением погонной задержки одиночной линии.
УСТРОЙСТВО ЗАЩИТЫ ОТ ИМПУЛЬСНЫХ СИГНАЛОВ | 2010 |
|
RU2431912C1 |
ЛИНИЯ ЗАДЕРЖКИ | 0 |
|
SU315286A1 |
ЛИНИЯ ЗАДЕРЖКИ | 2007 |
|
RU2453036C2 |
WO 2008061052 A2, 22.05.2008. |
Авторы
Даты
2015-11-20—Публикация
2014-03-05—Подача