Изобретение относится к области экспериментальной физики плазмы. Например, предлагаемый способ может быть применен в программе управляемого термоядерного синтеза на базе установок с магнитным удержанием плазмы, в частности токамаков. В этих экспериментах температура рабочего газа (изотопов водорода) является важнейшим параметром, поскольку именно она определяет интенсивность реакций синтеза. Ионная температура в токамаке значительно отличается в различных зонах плазмы, поэтому для работы термоядерного реактора необходимы достаточно подробные измерения пространственного распределения этой величины.
СПИСОК ИСПОЛЬЗОВАННЫХ ТЕРМИНОВ И СОКРАЩЕНИЙ
Функция распределения частиц по энергии, энергетическое распределение частиц -
Полный объем измерений, ПОИ - объем плазмы, частицы из которого, двигающиеся по прямолинейным траекториям, могут при определенном направлении вектора скорости быть зарегистрированы; для коллиматора, образованного двумя прямоугольными отверстиями - это пирамида (пирамида наблюдения), усеченная ближней к коллиматору и удаленной от него поверхностями плазмы.
Линия наблюдения - прямая, проходящая через центры отверстий коллиматора.
Калибровка - процесс измерения характеристик (эффективности регистрации, диапазона измеряемых параметров частиц, аппаратной функции, динамического диапазона и т.д.) прибора.
Спектрально-селективный прибор, ССП - прибор, позволяющий выделить и зарегистрировать фотоны одной (одноканальный ССП, монохроматор) или нескольких (напр. спектрометр, спектрограф, полихроматор) областей спектра.
Локальный объем измерений, ЛОИ - часть полного объема наблюдения, заключенного между двумя сферическими поверхностями, центры которых расположены на оси наблюдения посередине между диафрагмами коллиматора; радиусы поверхностей определяются параметрами схемы регистрации электрических импульсов.
Сопряженные каналы анализатора и ССП - каналы, имеющие одинаковые номера i и приведенные в соответствие между собой согласно следующему правилу: i-м каналом анализатора регистрируют атомы с энергией Ei, а i-м каналом спектрометра - фотоны с длиной волны λ0-Δλi, где λ0 - длина волны водородной линии, излучающейся покоящимся атомом, а Δλi - смещение длины волны, обусловленное эффектом Доплера для энергии Ei.
Известен способ измерения пространственного распределения ионной температуры водородной плазмы [В.В. Афросимов, М.П. Петров, В.А. Садовников. Измерение локальных значений ионной температуры в токамаке с использованием перезарядки ионов плазмы на струе водородных атомов. Письма в ЖЭТФ, 1973, т. 18, с. 510], заключающийся в том, что измеряют энергетическое распределение атомов перезарядки термализованных ионов плазмы на атомах водорода; поскольку передача энергии в этом процессе, как правило, пренебрежимо мала по сравнению с энергией регистрируемых атомов, можно считать, что температура атомов перезарядки, рождающихся в некотором объеме плазмы, равна ионной температуре в том же объеме;
энергетическое распределение измеряют калиброванным многоканальным анализатором, каждый канал которого регистрирует атомы определенной энергии;
при этом каждому зарегистрированному атому соответствует электрический импульс на выходе соответствующего канала;
по соотношению числа импульсов на выходе различных каналов, используя характеристики, полученные при калибровке анализатора, и некоторые данные других диагностик, определяют энергетическое распределение атомов перезарядки и соответственно пространственного распределения ионной температуры водородной плазмы;
для получения локальных измерений используют пучок водородных атомов, пересекающий объем наблюдения анализатора. До и после инжекции измеряется «пассивный» сигнал, а во время инжекции - «суммарный» («пассивный» + «активный»); вычитая из «суммарного» энергетического спектра «пассивный» можно определить распределение по энергиям только тех атомов, которые образуются при перезарядке термализованных ионов плазмы на атомах пучка, и получить энергетическое распределение атомов (а следовательно, и ионов плазмы) именно для объема пересечения пучка с полным объемом наблюдения анализатора;
усредняя «активное» энергетическое распределение, определяют температуру атомов перезарядки, а следовательно, и ионов плазмы в объеме пересечения пучка и линии наблюдения анализатора;
одновременно спектрально-селективным прибором (ССП) измеряют яркость одной из линий бальмеровской серии; результаты этих измерений используются только для того, чтобы измерить параметры инжектируемого пучка.
Этот способ выбран в качестве прототипа предлагаемого решения.
Описанный способ обладает следующими недостатками.
Первый недостаток связан с необходимостью применения сложных, дорогостоящих и, как правило, недостаточно надежных инжекторов атомов.
Второй недостаток заключается в том, что инжекция пучка атомов приводит к возмущению плазмы, поэтому измеренная ионная температура может существенно отличаться от существующей в отсутствие инжекции.
Третий недостаток состоит в том, что пространственное разрешение измерений определяется размерами пучка, уменьшать которые можно только до определенного предела из-за технических ограничений; таким образом, отсутствуют действия, позволяющие улучшить детализацию измеряемого пространственного распределения ионной температуры.
Четвертый недостаток - для каждой пространственной зоны измерений необходим отдельный анализатор; отсюда следует, что на больших установках предреакторного поколения и на реакторе нужно иметь несколько десятков анализаторов, что практически неосуществимо.
Технический результат изобретения заключается в обеспечении возможности измерений без использования зондирующих атомных пучков, а также в повышении достоверности и точности измерений.
Для этого предложен способ измерения пространственного распределения ионной температуры водородной плазмы, заключающийся в том, что измеряют энергетическое распределение атомов перезарядки, поступающих из плазмы, калиброванным многоканальным анализатором, каждый канал которого регистрирует атомы определенной энергии, при этом каждому зарегистрированному атому соответствует электрический импульс на выходе анализатора, и одновременно регистрируют фотоны спектрально-селективным прибором (ССП), имеющим с анализатором общий входной коллиматор, при этом в качестве ССП используют многоканальный ССП, каждый канал которого регистрирует фотоны определенной длины волны, и каждому зарегистрированному фотону соответствует электрический импульс на выходе соответствующего канала, при этом число каналов спектрометра равно числу каналов анализатора, при этом регистрируют атомы с энергией Ei i-м каналом анализатора, и регистрируют фотоны с длиной волны λ0-Δλi i-м каналом ССП, где λ0 - длина волны водородной линии, излучающейся покоящимся атомом, а Δλi - смещение длины волны, обусловленное эффектом Доплера для энергии Ei, электрические импульсы с i-го выхода анализатора подают на один из входов детектора совпадений, а импульсы с i-го выхода ССП подают на другой вход детектора совпадений через блок задержки, при этом время задержки устанавливают согласно формуле:
где Δτ - время задержки;
Lion - полная длина пути атома/иона от локального объема измерений до поверхности детектора;
νi - скорость атома/иона;
Lfot - полная длина пути фотона от локального объема измерений до поверхности детектора;
c - скорость света;
i - номер канала анализатора и ССП;
электрические импульсы с выхода детектора совпадений подают на счетчик импульсов, по соотношению количества импульсов, зарегистрированных в различных каналах анализатора, определяют энергетическое распределение атомов перезарядки и соответственно температуру (Tion) в данном ЛОИ, и, устанавливая между каждыми двумя i-ми сопряженными каналами анализатора и ССП параллельно j электрических цепей, включающих блок задержки, детектор совпадений и счетчик импульсов, с разными временами задержки, получают значения Tion(j) в j локальных областях измерения и зависимость Tion(L), где L - координата вдоль линии наблюдения, т.е. пространственное распределение ионной температуры.
Способ основан на регистрации атомов и фотонов, рождающихся в одном и том же акте одной из ветвей реакции перезарядки термализованного иона плазмы на атоме водорода. Такой процесс протекает с образованием возбужденного атома, который за короткое время релаксирует с испусканием фотона линейчатого излучения. Вот как выглядит формула процесса для водорода:
здесь
Поскольку передача энергии в этом процессе не превышает нескольких эВ, то при ионной температуре плазмы более 100-200 эВ ошибку, связанную с изменением энергии при перезарядке, можно не учитывать, т.е. полагать, что энергия возбужденного и нейтрального атомов равна энергии исходного иона плазмы. Длина волны фотона, излучаемого при релаксации возбужденного атома, будет составлять сумму длины волны линии, излучаемой покоящимся атомом, и добавки, обусловленной доплеровским смещением, определяемым скоростью движения атома перезарядки.
На фиг. 1 показан один из возможных вариантов устройства для реализации предлагаемого способа.
На фиг. 2 показана блок-схема регистрации электрических импульсов (РЭИ).
На фиг. 3 показана блок-схема регистрации электрических импульсов для измерений в М локальных объемах измерения (ЛОИ1…ЛОИМ), что достигается использованием нескольких РЭИ.
Позициями обозначены:
1 - плазма;
2 - входной коллиматор;
3 - вакуумный шибер;
4 - камера ионизации, заполненная газом;
5 - анализирующий магнит;
6 - зеркало;
7 - оптический ввод;
8 - спектрально-селективный прибор ССП;
9 - траектории ионов, образовавшихся после ионизации атомов;
10 - электрические выходы ССП;
11 - электрические выходы анализатора;
12 - анализатор атомов;
13 - БЗi - регулируемая схема задержки;
14 - ДСi - детектор совпадающих импульсов;
15 - СЧi - счетчик импульсов.
16 - РЭИ - схема регистрации электрических импульсов, включающая регулируемую схему задержки, детектор совпадающих импульсов и счетчик импульсов;
ВСi - выход i-го канала ССП;
ВАi - выход i-го канала анализатора;
РЭИij - схема регистрации электрических импульсов, включенная между выходами i-х каналов анализатора и ССП и предназначенная для измерений в локальном объеме ЛОИj, где j - от 1 до М.
Основными компонентами устройства являются энергетический анализатор атомов 12 и спектрально-селективный прибор (ССП) 8. Ближняя к устройству граница объема, занятого плазмой, обозначена цифрой 1.
На входе анализатора атомов устанавливается коллиматор 2. Для анализатора и для ССП используется общий коллиматор, представляющий собой две тонкие пластины с отверстиями прямоугольной формы; плоскости пластин перпендикулярны линии, проходящей через центры отверстий. Параметры коллиматора определяют полный объем измерений как для анализатора, так и ССП. За коллиматором располагаются вакуумный шибер 3 и камера ионизации 4, заполненная водородом, в которой часть атомов, поступающих из плазмы, превращается в ионы. Анализирующий магнит 5, напряженность магнитного поля которого направлена перпендикулярно плоскости рисунка, отклоняет ионы, образовавшиеся в камере ионизации, на разные углы, величина которых зависит от энергии ионов. Электрические импульсы, формирующиеся при регистрации ионов разной энергии в различных каналах анализатора, подаются на электрические выходы анализатора 11. За анализирующим магнитом 5 располагается металлическое зеркало 6, направляющее световое излучение плазмы через оптический ввод 7 - стеклянное вакуумное окно на вход ССП 8. В приведенной иллюстративной схеме ССП, как и анализатор, является пятиканальным, в каждом канале регистрируются фотоны разных длин волн. На практике число каналов может достигать нескольких десятков.
И анализатор, и ССП работают в режиме счета импульсов, это означает, что каждой зарегистрированной частице соответствует отдельный, короткий по сравнению со временем накопления информации, электрический импульс на одном из выходов анализатора и ССП 11 и 10 соответственно.
Перед началом измерений и анализатор, и ССП проходят процедуру калибровки; измеренные характеристики приборов используются при обработке полученных экспериментальных данных.
Каналы приборов, используемых для реализации предлагаемого способа, (сопряженные каналы) устроены таким образом, что i-му каналу анализатора, регистрирующему атомы с энергией Ei, соответствует i-й канал ССП, регистрирующий фотоны с длиной волны λ0-Δλi, где λ0 - длина волны линии, излучающейся покоящимся атомом (например, одной из линий серии Бальмера), а Δλi - смещение длины волны, обусловленное эффектом Доплера для энергии Ei, где i - номер канала от 1 до K.
Без использования дополнительных мер для обеспечения пространственного разрешения измерений как анализатор, так и спектрометр будут регистрировать атомы и фотоны, которые образовались в результате актов перезарядки, происходящих в полном объеме измерений. Однако можно проводить измерения в значительно меньшем объеме (локальном объеме измерений ЛОИ), лежащем внутри полного объема измерений, используя тот факт, что фотон и атом, родившиеся в одном и том же акте перезарядки, движутся с разными скоростями. Время задержки между импульсами, обусловленными регистрацией фотона и атома, родившихся в одном акте, известно для каждой пары сопряженных каналов и составляет:
где Δτ - время задержки; Lion - полная длина пути атома/иона от локального объема измерений до поверхности детектора; vi - скорость атома/иона; Lfot - полная длина пути фотона от локального объема измерений до поверхности детектора; c - скорость света.
Таким образом, можно регистрировать только те пары электрических импульсов, возникающих при регистрации фотонов и атомов в i-х каналах ССП и анализатора, временной сдвиг которыми составляет Δτ; в этом случае существует вероятность того, что и фотон, и атом родились в одном и том же акте перезарядки. Для снижения помехи, связанной с совпадением случайных импульсов, скважность в каналах как анализатора, так и ССП не должна быть менее 8…10. Таким образом, задавая Δτ, можно измерить потоки атомов перезарядки, имеющих различные энергии, из любого локального объема измерения вдоль линии наблюдения.
На фиг. 2 показана блок-схема регистрации электрических импульсов 16 (РЭИ), на которую подаются сигналы с выходов i-х каналов анализатора ВАi и ССП ВСi. Основой схемы является детектор совпадающих импульсов - детектор совпадений 14 ДСi. Импульсы с анализатора поступают в ДСi непосредственно, а с ССП через регулируемый блок задержек 13 БЗi. Блок ДСi выдает импульс на счетчик импульсов 15 СЧi только в том случае, когда импульсы присутствуют одновременно на обоих его входах.
Описанная схема позволяет измерить потоки атомов и фотонов только из одного локального объема измерений. Для одновременного измерения в нескольких локальных объемов достаточно включить между выходами сопряженных каналов анализатора и ССП параллельно М аналогичных схем РЭИ 16 задержки Δτij, каждая из которых настроена для измерений в определенном локальном объеме измерений j (фиг. 3, Блок-схема регистрации в М локальных объемах измерения). На фиг. 3 ВСi - выход i-го канала ССП; ВАi - выход i-го канала анализатора. Блоки задержки в цепях РЭИi1…РЭИiM настроены для измерений в различных локальных объемах плазмы ЛОИj…ЛОИМ вдоль линии наблюдения, т.е. установлены разные времена задержки.
В результате эксперимента получают последовательности количества зарегистрированных в каналах анализатора импульсов N для каждого из локальных объемов измерений j. Обработка данных для получения локальной температуры плазмы Tion(j) проводится с учетом характеристик, полученных в процессе калибровки приборов и некоторых данных других диагностик. Методика алгоритма обработки аналогична таковой, используемой для активной корпускулярной диагностики [В.В. Афросимов, М.П. Петров, В.А. Садовников. Измерение локальных значений ионной температуры в токамаке с использованием перезарядки ионов плазмы на струе водородных атомов. Письма в ЖЭТФ, 1973, т. 18, с. 510.1] и подробно описана в (Ю.В. Готт, В.А. Курнаев, О.Л. Вайнсберг, Корпускулярная диагностика лабораторной и космической плазмы, Учебное пособие, Московский инженерно-физический институт (Государственный университет), 2008, 143 с.). После чего переходят от ряда значений Tion(j) к зависимости Tion(L), где L - координата вдоль линии наблюдения, т.е. к пространственному распределению ионной температуры.
Изобретение относится способу измерения пространственного распределения ионной температуры водородной плазмы и характеризуется тем, что измеряют энергетическое распределение атомов перезарядки, поступающих из плазмы, калиброванным многоканальным анализатором, каждый канал которого регистрирует атомы определенной энергии. Каждому зарегистрированному атому соответствует электрический импульс на выходе анализатора, и одновременно регистрируют фотоны спектрально-селективным прибором (ССП), имеющим с анализатором общий входной коллиматор. При этом регистрируют атомы с энергией Еi i-м каналом анализатора и регистрируют фотоны с длиной волны λ0-Δλ i-м каналом ССП, где λ0 - длина волны водородной линии, излучающейся покоящимся атомом, a Δλ - смещение длины волны, обусловленное эффектом Доплера для энергии Еi. Возникшие электрические импульсы с выхода детектора совпадений подают на счетчик импульсов и по соотношению количества импульсов, зарегистрированных в различных каналах анализатора, определяют энергетическое распределение атомов перезарядки и соответственно ионную температуру Тion в данном ЛОИ. Далее получают значения Tion(j) для j локальных областей измерения и зависимость Tion(L), где L - координата вдоль линии наблюдения, т.е. пространственное распределение ионной температуры. Технический результат изобретения заключается в обеспечении возможности измерений без использования зондирующих атомных пучков, а также в повышении достоверности и точности измерений. 3 ил.
Способ измерения пространственного распределения ионной температуры водородной плазмы, заключающийся в том, что измеряют энергетическое распределение атомов перезарядки, поступающих из плазмы калиброванным многоканальным анализатором, каждый канал которого регистрирует атомы определенной энергии, при этом каждому зарегистрированному атому соответствует электрический импульс на выходе анализатора, и одновременно регистрируют фотоны спектрально-селективным прибором (ССП), имеющим с анализатором общий входной коллиматор, отличающийся тем, что в качестве ССП используют многоканальный ССП, каждый канал которого регистрирует фотоны определенной длины волны и каждому зарегистрированному фотону соответствует электрический импульс на выходе соответствующего канала, при этом число каналов спектрометра равно числу каналов анализатора, при этом регистрируют атомы с энергией Ei i-м каналом анализатора и регистрируют фотоны с длиной волны λ0-Δλ i-м каналом ССП, где λ0 - длина волны водородной линии, излучающейся покоящимся атомом, a Δλ - смещение длины волны, обусловленное эффектом Доплера для энергии Ei, электрические импульсы с i-го выхода анализатора подают на один из входов детектора совпадений, а импульсы с i-го выхода ССП подают на другой вход детектора совпадений через блок задержки, при этом время задержки устанавливают согласно формуле:
где Δτ - время задержки;
Lion - полная длина пути атома/иона от локального объема измерений до поверхности детектора;
νi - скорость атома/иона;
Lfot - полная длина пути фотона от локального объема измерений до поверхности детектора;
с - скорость света;
i - номер канала анализатора и ССП;
электрические импульсы с выхода детектора совпадений подают на счетчик импульсов и по соотношению количества импульсов, зарегистрированных в различных каналах анализатора, определяют энергетическое распределение атомов перезарядки и соответственно температуру Тion в данном ЛОИ, устанавливая между каждыми двумя i-ми сопряженными каналами анализатора и ССП параллельно j электрических цепей, включающих блок задержки, детектор совпадений и счетчик импульсов, с разными временами задержки, получают значения Тion(j) для j локальных областей измерения и зависимость Tion(L), где L - координата вдоль линии наблюдения, т.е. пространственное распределение ионной температуры.
Авторы
Даты
2015-11-27—Публикация
2014-06-27—Подача