СПОСОБ ПЕРЕКАЧКИ ВЯЗКИХ УГЛЕВОДОРОДНЫХ ЖИДКОСТЕЙ ПО ТРУБОПРОВОДУ Российский патент 2015 года по МПК F17D1/18 

Описание патента на изобретение RU2569782C2

Изобретение относится к транспортированию вязких углеводородных жидкостей по трубопроводам.

Известные способы перекачки вязких жидкостей по трубопроводам, основанные на снижении вязкости перекачиваемых жидкостей, можно разделить на три группы:

1. Снижение вязкости за счет предварительного нагрева жидкости. Известен способ транспортирования по трубопроводам предварительно нагретых неньютоновских парафинсодержащих углеводородных жидкостей ("горячая" перекачка). Начальную температуру потока выбирают таким образом, чтобы в конце трубопровода поддерживалась температура на 3-5°C выше температуры застывания неньютоновской парафинсодержащей углеводородной жидкости. Ее нагрев производится на специальных тепловых станциях (см. В.И. Черникин. Перекачка вязких и застывающих нефтей. М.: Гостоптехиздат, 1958 [1]). К недостаткам этого известного способа транспортирования неньютоновской парафинсодержащей углеводородной жидкости относятся: сжигание части перекачиваемой нефти в печах нагрева, загрязнение воздушного бассейна продуктами сгорания, невозможность использования "горячей" перекачки на подводных трубопроводах без специальной дорогостоящей теплоизоляции, при перекачке с остановками и т.д.

2. Снижение вязкости за счет обработки жидкости ультразвуком или электромагнитным излучением. Примером такого способа могут служить патенты РФ №2346206 «Способ перекачивания вязких жидкостей» [2], Патент РФ №2232124 «Способ плавления и снижения вязкости химических продуктов, преимущественно нефти и нефтепродуктов, и устройство для его осуществления» [3], Патент РФ №2103211 «Способ разогрева в емкости загустевших продуктов и устройство для его осуществления» [4]. Недостатком таких способов можно считать необходимость установки излучателей.

3. Снижение вязкости за счет введения в жидкость присадок. К присадкам можно отнести разжижители (Заявка на изобретение №92010884 «Способ добычи высоковязкой нефти» [5]), депрессорные присадки (патент РФ №2124160 «Способ транспортирования неньютоновской парафинсодержащей углеводородной жидкости по трубопроводу» [6]). К недостаткам этих способов можно отнести высокую стоимость процесса из-за необходимости добавления дополнительного продукта в вязкую жидкость и в большинстве случаев невозможность повторного использования разжижителя или присадки.

Целью изобретения является разработка нового способа перекачки вязких углеводородных жидкостей по трубопроводу при снижении их вязкости в результате нагревания, достигаемого соответствующей скоростью перекачки.

Технический результат изобретения - повышение эффективности процесса перекачки вязких углеводородных жидкостей по трубопроводам за счет снижения их вязкости в результате нагревания, достигаемого соответствующей скоростью перекачки.

Снижение вязкости транспортируемой жидкости достигается повышением температуры жидкости за счет выделения тепла внутреннего трения. Для достижения данного эффекта и компенсации потерь тепла при транспортировке жидкости необходимо обеспечение соответствующей скорости перекачки, благодаря чему выделение энергии от трения будет происходить более интенсивно. При этом необходимым условием для осуществления данного способа перекачки является условие:

где: W1 - тепло, выделившееся при трении жидкости;

W2 - потери тепла при перекачке.

Исходя из выполнения равенства W1=W2 определяются параметры перекачки.

Методика расчета, в качестве примера, может быть следующей. Дифференциальное уравнение тепловой энергии, в котором влияние трения учитывается диссипативным членом, представляется в виде (см. Валеев А.Р. Тепловые режимы трубопроводов. Вопрос учета нагрева нефти и газа в трубопроводах // Электронный научный журнал «Нефтегазовое дело». 2009. №2. С.URL: http://ogbus.ru/authors/Valeev/Valeev_1.pdf [7]; Краус Ю.А. Проектирование и эксплуатация магистральных нефтепроводов Часть 1: Основные факторы, влияющие на особенности эксплуатации и выбор проектных параметров магистральных нефтепроводов. - Омск. Издательство ОмГТУ, 2010 [8]):

где - диссипативный член;

w - скорость движения нефти;

cpo - изобарная теплоемкость;

k - коэффициент теплопередачи от потока нефти в окружающую среду;

d - внутренний диаметр трубопровода;

Т - температура, в сечении х;

Т0 - температура окружающей среды;

- гидравлический уклон;

λ - коэффициент трения

Решив данное уравнение, считая движение жидкости стационарным, получают уравнение Шухова с поправкой Лейбензона, учитывающей тепло трения [7; 8]:

G - массовый секундный расход;

- коэффициент Шухова;

L - длина трубопровода

Далее расчет ведут исходя из равенства количеств теплоты, выделяемого за счет внутреннего трения и отдаваемого в окружающую среду (W1=W2), что означает достижение постоянной температуры на всем протяжении трубопровода. В таком случае температура жидкости в начале трубопровода (Тн) будет равна температуре жидкости в любой его точке (Т):

Преобразовав (3) с использованием (4), получим следующее выражение:

Теперь задача сводится к подбору параметров, удовлетворяющих данному уравнению. Они и будут устанавливать требуемый режим работы трубопровода, при котором температура нефти на всем протяжении трубопровода будет не ниже начальной.

Пример конкретного выполнения 1

Пусть требуется выполнение перекачки высоковязкой нефти (ρ=800 кг/м3, ν40=20 сСт) с расходом Q=9500 м3/ч с обеспечением температуры не ниже 40°C на протяжении всей длины трубопровода. Трубопровод проложен подземно без тепловой изоляции. Средняя температура грунта на глубине прокладки 2°C. Требуется определить диаметр трубопровода, при котором будет обеспечиваться указанная температура перекачки.

Решать задачу следует методом последовательных приближений. То есть, задавшись диаметром трубопровода d, следует определить параметры, необходимые для определения минимального массового расхода, чтобы выполнялось условие W1=W2, по формуле (5):

Для первого приближения диаметра трубопровода можно использовать техническую или нормативную документацию, например РД 153-39.4-113-01 «Нормы технологического проектирования магистральных нефтепроводов». Заданный расход перекачки (Q=9500 м3/час) соответствует производительности нефтепровода 63,9 млн т/год (при заданной плотности ρ=800 кг/м3 и условии работы трубопровода 350 дней в году). Исходя из таблицы 5.1 РД 153-39.4-113-01 такой производительности нефтепровода соответствует диаметр (наружный) 1220 мм. Учитывая, что предлагаемый метод перекачки основан на выделении тепла за счет увеличенной скорости перекачки, для расчетов следует принять меньший диаметр, то есть 1020 мм. Примем для расчетов толщину стенки трубы 15 мм, таким образом, внутренний диаметр трубопровода равен d=990 мм. Примем абсолютную шероховатость, равную Δ=0,0002 м.

Вычисляем скорость потока нефти в трубопроводе:

Вычисляем число Рейнольдса по формуле:

Вычисляем коэффициент гидравлического сопротивления по формуле Альтшуля

Вычисляем минимальный массовый расход, который требуется для обеспечения условия W1=W2, предварительно приняв k=1,9 Вт/м2°C (принимается по справочной литературе или вычисляется известными методами):

Минимальный объемный расход будет равен

Поскольку заданная производительность перекачки Q=9500 м3/час больше рассчитанной минимальной производительности Qmin=9065,7 м3/час, то принятый диаметр трубопровода d=990 мм обеспечит перекачку нефти с поддержанием температуры нефти не ниже заданной (40°C) по всей длине трубопровода.

В случае если расчетная минимальная производительность Qmin превышает заданную Q, то следует уменьшить диаметр и провести расчеты заново.

Таким образом, предлагаемый способ перекачки обеспечивает транспортировку нефти по трубопроводу с поддержанием температуры не ниже заданной за счет тепла, выделяемого в результате внутреннего трения слоев нефти, тем самым не допуская увеличения вязкости нефти, таким образом, нагрев перекачиваемых жидкостей производят без использования печей подогрева или иных устройств, за счет скорости перекачки, при которой выполняется условие (1):

где: W1 - тепло, выделившееся при трении жидкости;

W2 - потери тепла при перекачке.

Пример конкретного выполнения 2

На существующем месторождении реализован внешний транспорт нефти в объеме 250 м3/час по трубопроводу 325×7 мм протяженностью 95000 м. Прокладка трубопровода подземная (температура грунта -3°C) в теплоизоляции толщиной 100 мм. Плотность нефти 900 кг/м3. Начальная температура нефти 34°C (кинематическая вязкость при 34°C 150 сСт). Требуемая температура нефти в пункте приема не ниже 30°C. Остывание нефти ниже 20°C недопустимо, поскольку это приводит к резкому увеличению вязкости и выпадению парафинов в трубе (кинематическая вязкость при 20°C 230 сСт). С этой целью на 57 километре трассы установлен подогреватель нефти. Параметры существующего режима перекачки приведены в таблице 1.

Рассмотрим применения предлагаемого способа перекачки для этого случая. Расчеты, проведенные по методике, аналогичной принятой в примере 1, дают результаты, приведенные в таблице 2.

Результаты расчета позволяют сделать заключение об экономической эффективности предлагаемого способа перекачки в сравнении с реализованным способом за счет:

1. Снижения капитальных и эксплуатационных затрат на строительство за счет уменьшения диаметра нефтепровода и исключения пункта подогрева.

2. Снижения эксплуатационных затрат за счет уменьшения суммарной потребляемой мощности на 46%.

Похожие патенты RU2569782C2

название год авторы номер документа
СПОСОБ ТРАНСПОРТИРОВАНИЯ НЕНЬЮТОНОВСКОЙ ПАРАФИНСОДЕРЖАЩЕЙ УГЛЕВОДОРОДНОЙ ЖИДКОСТИ ПО ТРУБОПРОВОДУ 1998
  • Конради В.В.
  • Коротков В.П.
  • Прохоров А.Д.
  • Челинцев С.Н.
RU2124160C1
Способ транспортирования высокопарафинистой нефти и/или нефтепродуктов по трубопроводам 2018
  • Ревель-Муроз Павел Александрович
  • Несын Георгий Викторович
  • Зверев Федор Сергеевич
  • Жолобов Владимир Васильевич
  • Хасбиуллин Ильназ Ильфарович
RU2686144C1
СПОСОБ ПОЛУЧЕНИЯ ДЕПРЕССОРНОЙ ПРИСАДКИ IN SITU В ПРОЦЕССЕ ТРУБОПРОВОДНОГО ТРАНСПОРТА ВЫСОКОПАРАФИНИСТОЙ НЕФТИ, ОБРАБОТАННОЙ ПРОТИВОТУРБУЛЕНТНОЙ ПРИСАДКОЙ 2018
  • Валиев Марат Иозифович
  • Несын Георгий Викторович
  • Хасбиуллин Ильназ Ильфарович
  • Суховей Максим Валерьевич
RU2689113C1
СПОСОБ ТРАНСПОРТИРОВКИ УГЛЕВОДОРОДНЫХ ЖИДКОСТЕЙ ПО МАГИСТРАЛЬНОМУ ТРУБОПРОВОДУ 2004
  • Беккер Леонид Маркович
  • Марон Вениамин Исаакович
  • Прохоров Александр Дмитриевич
  • Челинцев Сергей Николаевич
RU2279014C1
Способ транспорта вязких нефтей и нефтепродуктов по трубопроводу 1990
  • Беккер Леонид Маркович
  • Вдовин Герасим Александрович
  • Шутов Анатолий Анатольевич
  • Валеев Рустем Анварович
SU1786335A1
СПОСОБ ПЕРЕМЕЩЕНИЯ ВЯЗКИХ НЕФТЕПРОДУКТОВ И ЖИДКОСТЕЙ 2013
  • Голованчиков Александр Борисович
  • Васильева Елена Владимировна
  • Дулькина Наталия Александровна
  • Мурзенков Денис Сергеевич
  • Польская Наталья Николаевна
  • Ильина Людмила Александровна
RU2542647C1
СПОСОБ ТРАНСПОРТИРОВАНИЯ УГЛЕВОДОРОДНОЙ ЖИДКОСТИ ПО ТРУБОПРОВОДУ 2016
  • Лебедев Юрий Владимирович
  • Афанасьев Игорь Павлович
  • Солодов Павел Александрович
  • Пимахин Александр Петрович
  • Кочетов Сергей Владимирович
  • Кравцов Денис Олегович
  • Обухов Олег Евгеньевич
  • Нифантов Михаил Алексеевич
RU2635959C2
СПОСОБ ТРУБОПРОВОДНОГО ТРАНСПОРТА МНОГОФАЗНОЙ МНОГОКОМПОНЕНТНОЙ СМЕСИ 2012
  • Каримов Марат Фазылович
  • Алимов Сергей Викторович
  • Каримов Зуфар Фазылович
  • Левитский Дмитрий Николаевич
  • Лобанов Андрей Николаевич
  • Муллагалиева Ляля Махмутовна
RU2503878C1
Присадка комплексного действия для транспортировки нефти и нефтепродуктов 2016
  • Байбекова Лия Рафаэльовна
  • Дусметова Гюзаль Икрамовна
  • Харитонов Евгений Васильевич
  • Шарифуллин Андрей Виленович
RU2637942C1
СПОСОБ ПЕРЕМЕЩЕНИЯ ВЯЗКИХ НЕФТЕЙ И НЕФТЕПРОДУКТОВ 2010
  • Голованчиков Александр Борисович
  • Дулькина Наталия Александровна
  • Решетников Александр Александрович
  • Бацокин Илья Сергеевич
  • Фетисова Екатерина Геннадьевна
  • Михеев Алексей Михайлович
RU2448283C1

Реферат патента 2015 года СПОСОБ ПЕРЕКАЧКИ ВЯЗКИХ УГЛЕВОДОРОДНЫХ ЖИДКОСТЕЙ ПО ТРУБОПРОВОДУ

Способ предназначен для перекачки вязких углеводородных жидкостей по трубопроводу. Способ заключается в предотвращении застывания в трубопроводе вязких углеводородных жидкостей за счет снижения вязкости в результате нагрева, при этом нагрев перекачиваемых жидкостей производят за счет скорости перекачки, при которой выполняется условие:

W1≥W2,

где W1 - тепло, выделившееся при трении жидкости;

W2 - потери тепла при перекачке.

Технический результат - повышение эффективности процесса перекачки вязких углеводородных жидкостей по трубопроводам.

Формула изобретения RU 2 569 782 C2

Способ перекачки вязких углеводородных жидкостей по трубопроводу с предотвращением их застывания в трубопроводе за счет снижения их вязкости в результате нагрева, отличающийся тем, что нагрев перекачиваемых жидкостей производят за счет скорости перекачки, при которой выполняется условие:

где W1 - тепло, выделившееся при трении жидкости;
W2 - потери тепла при перекачке.

Документы, цитированные в отчете о поиске Патент 2015 года RU2569782C2

Способ транспорта вязких нефтей и нефтепродуктов по трубопроводу 1990
  • Беккер Леонид Маркович
  • Вдовин Герасим Александрович
  • Шутов Анатолий Анатольевич
  • Валеев Рустем Анварович
SU1786335A1
Способ трубопроводного транспорта высокопарафинистой нефти 1986
  • Михальков Петр Васильевич
SU1413353A1
Способ транспортирования высоковязких и застывающих нефтей 1986
  • Каган Яков Михайлович
  • Олофинский Евгений Павлович
  • Плющ Григорий Иванович
  • Кондратьев Александр Сергеевич
  • Резников Вячеслав Михайлович
  • Шнейдерман Борис Михайлович
  • Шварц Михаил Эхильевич
  • Соколов Сергей Михайлович
  • Мирзаджанзаде Азат Халилович
  • Байдиков Юрий Николаевич
  • Курбатов Николай Иванович
  • Степин Борис Сергеевич
SU1357655A1
ДОИЛЬНЫЙ АППАРАТ 2013
  • Ульянов Вячеслав Михайлович
  • Карпов Юрий Николаевич
  • Набатчиков Алексей Викторович
  • Хрипин Владимир Александрович
RU2524542C1
Колосоуборка 1923
  • Беляков И.Д.
SU2009A1

RU 2 569 782 C2

Авторы

Яценко Владимир Владимирович

Яценко Игорь Владимирович

Даты

2015-11-27Публикация

2013-09-13Подача