Изобретение относится к области радиотехники, в частности к радиопоглощающим покрытиям (РПП) для поглощения электромагнитных волн (ЭМВ), и может быть использовано в сверхширокополосных антенных системах.
При разработке сверхширокополосных антенных систем, работающих в непрерывном диапазоне частот с коэффициентом перекрытия рабочего диапазона частот порядка десяти и более, возникает проблема стабилизации параметров антенн, размещенных на металлической платформе. За счет интерференции и дифракции на металлической платформе происходит существенное нарушение монотонности диаграмм направленности (ДН) антенн, появляется изрезанность ДН, нарушение их поляризационных характеристик, что приводит к невыполнению технических требований к антенной системе.
Известно радиопоглощающее покрытие РАН-57 (ТУ 229483-093-29012159-2010, Учреждение Российской академии наук Институт теоретической и прикладной электродинамики РАН), данное покрытие представляет собой многослойный композиционный материал, модифицированный порошками карбонильного железа КЖ-2 и КЖ-3, микростеклосферами и реологическими добавками. Данное покрытие имеет небольшую толщину, коэффициент отражения не более минус 10 дБ, но сравнительно небольшой коэффициент перекрытия рабочего диапазона по частоте, равный трем, что недостаточно для сверхширокополосных антенных систем.
Известна конструкция сверхширокополосного радиопоглощающего слоя (Титов А.Н., Бибиков С.Б., Куликовский Э.И. К синтезу сверхширокополосного радиопоглощающего слоя. Сверхширокополосные и сверхкороткие импульсные сигналы, 15-19 сентября 2008 г. Севастополь, Украина). Авторы приводят пример расчета радиопоглощающего слоя для КО не более 20 дБ. По предложенному расчету толщина поглотителя должна быть порядка 150 мм. Указанная толщина поглотителя совершенно не подходит для антенных платформ сантиметрового диапазона. Там же приведен пример восьмислойного радиопоглощающего материала для диапазона частот выше 7,5 ГГц толщиной 28 мм. С учетом пересчета для предполагаемой нижней частоты рабочего диапазона 2 ГГц полученная толщина также не приемлема.
Целью настоящего изобретения является разработка тонкого, не более 11 мм, радиопоглощающего покрытия, работающего в сверхшироком диапазоне частот с перекрытием по частоте порядка 10 с коэффициентом отражения не более минус 10 дБ.
Указанная цель достигается тем, что сверхширокополосное радиопоглощающее покрытие выполнено в виде многослойного металлополимероматричного композиционного материала, слои которого имеют различную толщину: первый слой - от 2,0 до 3,0 мм, второй слой - от 1,0 до 1,5 мм, третий слой - от 0,5 до 1,0 мм, четвертый слой - от 1,0 до 2,0 мм, пятый слой - от 3,0 до 3,5 мм. При этом в каждом слое в качестве наполнителя используется комплекс ферромагнитных частиц с различными формами и размерами:
в первом слое (частицы чешуйчатой формы) от 5 до 25 мкм,
во втором слое (частицы чешуйчатой формы) от 3 до 10 мкм,
в третьем слое (частицы сфероидальной формы) от 1 до 5 мкм,
в четвертом слое (частицы сфероидальной формы) от 1 до 5 мкм;
в пятом слое (частицы сфероидальной формы) от 1 до 5 мкм.
при следующем соотношении компонентов в каждом слое:
- в первом слое:
полимер - 100 в.ч.,
ферромагнитный наполнитель от 100 до 200 в.ч.,
- во втором слое:
полимер - 100 в.ч.
ферромагнитный наполнитель от 300 до 500 в.ч.,
- в третьем слое:
полимер - 100 в.ч.
ферромагнитный наполнитель от 450 до 650 в.ч.,
- в четвертом слое:
полимер - 100 в.ч.
ферромагнитный наполнитель от 200 до 300 в.ч.,
- в пятом слое:
полимер - 100 в.ч.
ферромагнитный наполнитель от 10 до 100 в.ч.
Каждый слой покрытия, имеющий различные концентрации ферромагнитных наполнителей, обладает разными значениями комплексной относительной диэлектрической (ε/, ε//) проницаемости, магнитной (µ/, µ//) проницаемости и коэффициентом отражения, приведенными в таблице 1.
Значительное ступенчатое снижение диэлектрической проницаемости от первого к пятому слою в 30 раз при плавном снижении магнитной проницаемости от второго к пятому слою обеспечивают плавное снижение коэффициента отражения при подборе толщин слоев покрытия. Сложная частотная дисперсия магнитной проницаемости слоев покрытия в совокупности с плавной дебаевской частотной зависимостью диэлектрической проницаемости слоев покрытия обеспечивает условия для ступенчатого уменьшения импеданса слоев покрытия от верхнего слоя к металлической подложке, что позволяет получить низкие значения коэффициента отражения такого градиентного РПП в сверхширокой полосе частот. При толщине РПП не более 11 мм обеспечивается работа сверхширокополосной антенной системы в сантиметровом диапазоне с перекрытием по частоте порядка 10 при коэффициенте отражения не более минус 10 дБ.
Коэффициент отражения слоя многослойного покрытия на металлической подложке рассчитывается по формуле:
где
Типичная частотная зависимость коэффициента отражения радиопоглощающего покрытия при нормальном падении электромагнитной волны приведена на Рисунке 1.
Такое тонкое сверхширокополосное РПП с удовлетворительным коэффициентом отражения вполне пригодно для широкого применения в современных изделиях. Для подтверждения данного заключения была проведена проверка влияния РПП на диаграммы направленности сверхширокополосной спиральной антенны, расположенной в центре металлической платформы размером 420×420 мм. ДН антенны измерялись на металлическорй платформе без покрытия и с покрытием в диапазоне частот 2-18 ГГц. Изрезанность диаграмм направленности при использовании покрытия в основном не превышала 1 дБ в секторе углов падения ЭМВ ±60°.
Изрезанность определялась как
Р - уровень измеренной ДН для угла, на котором определяется изрезанность,
Рср - уровень усредненной ДН для угла, на котором определяется изрезанность.
Изрезанность диаграммы направленности на металлической платформе без РПП увеличивается до 4÷6 дБ, причем рост изрезанности более выражен при горизонтальной поляризации падающих электромагнитных волн.
Покрытие наносят на поверхность металлическую платформу методом пневматического напыления. Оно может эксплуатироваться в интервале температур от минус 60°C до плюс 180°C, стойко к воздействию солнечной радиации и воды.
В итоге разработано тонкое не более 11 мм или 0,07λниж, где λниж - длина волны, соответствующая нижней частоте рабочего диапазона радиопоглощающее покрытие, работающее в сверхшироком диапазоне частот с перекрытием по частоте порядка 10 и коэффициентом отражения не более минус 10 дБ.
Использование радиопоглощающего покрытия в составе системы сверхширокополосных спиральных антенн позволило уменьшить изрезанность диаграмм направленности сверхширокополосных спиральных антенн, размещенных на металлической платформе до уровня 1 дБ, обеспечить работоспособность системы сверхширокополосных спиральных антенн в рамках технических требований.
название | год | авторы | номер документа |
---|---|---|---|
СВЕРХШИРОКОПОЛОСНОЕ РАДИОПОГЛОЩАЮЩЕЕ ПОКРЫТИЕ | 2016 |
|
RU2626073C1 |
РАДИОПОГЛОЩАЮЩЕЕ ПОКРЫТИЕ | 2008 |
|
RU2369947C1 |
Композиционный радиопоглощающий материал и способ его изготовления | 2016 |
|
RU2644399C9 |
ПОГЛОТИТЕЛЬ ЭЛЕКТРОМАГНИТНЫХ ВОЛН | 2010 |
|
RU2414029C1 |
РАДИОПОГЛОЩАЮЩИЙ МАТЕРИАЛ И СПОСОБ ПОЛУЧЕНИЯ РАДИОПОГЛОЩАЮЩЕГО ПОКРЫТИЯ | 2012 |
|
RU2502766C1 |
Малогабаритная волноводная нагрузка | 2023 |
|
RU2814585C1 |
СВЕРХШИРОКОПОЛОСНОЕ ПОГЛОЩАЮЩЕЕ ПОКРЫТИЕ | 2018 |
|
RU2678937C1 |
ЩЕЛЕВАЯ АНТЕННА С ПОГЛОЩАЮЩИМ ПОКРЫТИЕМ, СОДЕРЖАЩИМ НАНОСТРУКТУРИРОВАННЫЕ ПРОВОДЯЩИЕ НИТИ ИЗ ПОЛУМЕТАЛЛОВ | 2019 |
|
RU2716882C1 |
ЗАЩИТНОЕ ПОКРЫТИЕ НА ОСНОВЕ ПОЛИМЕРНОГО КОМПОЗИЦИОННОГО РАДИОМАТЕРИАЛА | 2015 |
|
RU2606350C1 |
Способ получения термостойкого радиопоглощающего покрытия и состав для его нанесения | 2021 |
|
RU2784397C1 |
Изобретение относится к области радиотехники, в частности к радиопоглощающим покрытиям (РПП), и может быть использовано в сверхширокополосных антенных системах. Сверхширокополосное радиопоглощающее покрытие выполнено в виде многослойного металлополимероматричного композиционного материала, слои которого имеют различную толщину: первый слой, состоящий из частиц чешуйчатой формы размером от 5 до 25 мкм, толщиной от 2,0 до 3,0 мм, второй слой из частиц чешуйчатой формы размером от 3 до 10 мкм толщиной от 1,0 до 1,5 мм, третий слой из частиц сфероидальной формы размером от 1 до 5 мкм толщиной от 0,5 до 1,0 мм, четвертый слой из частиц сфероидальной формы размером 1 до 5 мкм толщиной от 1,0 до 2,0 мм, пятый слой из частиц сфероидальной формы размером от 1 до 5 мкм толщиной от 3,0 до 3,5 мм. Технический результат - уменьшение изрезанности диаграмм направленности сверхширокополосных спиральных антенн, размещенных на металлической платформе до уровня 1 дБ, обеспечение работоспособности системы сверхширокополосных спиральных антенн в рамках технических требований. 1 ил.,1 табл.
Сверхширокополосное радиопоглощающее покрытие, выполненное в виде многослойного металлополимероматричного композиционного материала, отличающееся тем, что слои выполнены различной толщины:
- первый слой - от 2,0 до 3,0 мм,
- второй слой - от 1,0 до 1,5 мм,
- третий слой - от 0,5 до 1,0 мм,
- четвертый слой - от 1,0 до 2,0 мм,
- пятый слой - от 3,0 до 3,5 мм,
при этом в каждом слое в качестве наполнителя используется комплекс ферромагнитных частиц с различными формами и размерами:
- в первом слое (частицы чешуйчатой формы) от 5 до 25 мкм;
- во втором слое (частицы чешуйчатой формы) от 3 до 10 мкм;
- в третьем слое (частицы сфероидальной формы) от 1 до 5 мкм;
- в четвертом слое (частицы сфероидальной формы) от 1 до 5 мкм;
- в пятом слое (частицы сфероидальной формы) от 1 до 5 мкм.
при следующем соотношении компонентов в каждом слое:
- в первом слое:
полимер - 100 в.ч.,
ферромагнитный наполнитель от 100 до 200 в.ч.,
- во втором слое:
полимер - 100 в.ч.
ферромагнитный наполнитель от 300 до 500 в.ч.,
- в третьем слое:
полимер - 100 в.ч.
ферромагнитный наполнитель от 450 до 650 в.ч.,
- в четвертом слое:
полимер - 100 в.ч.
ферромагнитный наполнитель от 200 до 300 в.ч.,
- в пятом слое:
полимер - 100 в.ч.
ферромагнитный наполнитель от 10 до 100 в.ч.
RU 2012151081 A, 10.06.2014 | |||
РАДИОПОГЛОЩАЮЩЕЕ ПОКРЫТИЕ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2003 |
|
RU2256984C2 |
Способ выравнивания несимметрии напряжений У-образных многофазных систем | 1926 |
|
SU6421A1 |
Способ магнитной навигации подводного аппарата | 2024 |
|
RU2826188C1 |
Авторы
Даты
2015-12-27—Публикация
2014-07-16—Подача