СПОСОБ ЭКСПЛУАТАЦИИ ЭЛЕКТРОЛИЗНОЙ СИСТЕМЫ, РАБОТАЮЩЕЙ ПРИ ВЫСОКОМ ДАВЛЕНИИ Российский патент 2016 года по МПК C25B1/12 C25B15/02 

Описание патента на изобретение RU2573575C2

Предлагаемое изобретение относится к «водородной» энергетике и может быть использовано на станциях заправки перспективного автотранспорта на топливных элементах.

Известен способ эксплуатации электролизной системы, работающей при относительно небольшой разности давлений с атмосферой, определяемой разностью столбов жидкости в сообщающихся сосудах, включающий разложение воды электрическим током и сбор полученных водорода и кислорода в баллонах при соблюдении равенства давлений этих газов. Этим способом достигается точное выравнивание давлений водорода и кислорода и соответственно компенсация перепада давлений на мембрану электролизера, но для работы на высоких давлениях этого недостаточно (Л.М. Якименко, И.Д. Модылевская, З.А. Ткачек. «Электролиз воды», М.: Химия, 1970 год, стр. 107, рис. 111-3).

Наиболее близким техническим решением (прототипом) к заявляемому изобретению является электролизная система заправки водородом, работающая при высоком давлении, и способ ее эксплуатации (патент RU 2455394, 10.07.2012, МПК C25B 1/12 (2006.01)). Способ эксплуатации электролизной системы заправки водородом, работающей при высоком давлении, включает разложение воды электрическим током, сбор полученных водорода и кислорода в баллонах при соблюдении равенства давлений этих газов и последующий перепуск водорода потребителю с его предварительным охлаждением, а при повышении температуры баллонов для сбора газов - водорода и кислорода до максимально допустимого значения ток электролиза уменьшают до уровня, обеспечивающего постоянство этой температуры, а предварительное охлаждение водорода в процессе его перепуска потребителю производят за счет синхронного расширения собранного кислорода в атмосферу. Соблюдение равенства давлений этих газов происходит за счет того, что соотношение объемов баллонов для сбора водорода и кислорода составляет 2:1 соответственно.

Если же производить процесс электролиза с перепуском водорода потребителю для обеспечения равенства давлений, кислород обязательно должен сбрасываться в окружающую среду. Именно таким образом осуществляется эксплуатация электролизных систем, работающих при высоком давлении, как в прототипе, так и во многих существующих электролизных системах, например в патенте WO 2004/076721 А2, 10.09.2004.

Недостаток эксплуатации современных электролизных систем, включая прототип, работающих при высоком давлении, связан с тем, что при их эксплуатации выравнивание давлений производится путем выпуска из установки того газа, который не нужен заказчику. При этом, кроме самого газа, теряется энергия, затраченная на его производство.

Задачей изобретения является разработка способа эксплуатации электролизных систем, который обеспечил бы надежную «закачку» в баллоны как водорода, так и кислорода при высоких давлениях и при соблюдении равенства давлений этих газов в процессе электролиза.

Техническим результатом изобретения является обеспечение надежной «закачки» в баллоны водорода и кислорода при высоких давлениях при соблюдении равенства давлений этих газов в процессе электролиза.

Технический результат изобретения достигается за счет того, что в способе эксплуатации электролизной системы, работающей при высоком давлении, включающем процесс разложения воды электрическим током с раздельным генерированием водорода и кислорода, сбор полученных газов в емкостях с соотношением объемов соответственно 2:1 и регистрацию давления этих газов, после регистрации давления кислорода P O 2 объем водородной емкости V H 2 увеличивают до значения, определяемого соотношением: V H 2 = V O 2 ρ O 2 8 ρ H 2 , где

V H 2 - объем водородной емкости;

V O 2 - объем кислородной емкости;

ρ O 2 - плотность кислорода при давлении P O 2 (в кислородной емкости);

ρ H 2 - плотность водорода при давлении P O 2 (в водородной емкости).

Сущность изобретения заключается в следующем.

В процессе разложения воды на кислород и водород масса получаемого кислорода относится к массе получаемого водорода как 8:1. Поскольку масса любого вещества равна произведению объема на его плотность, то при любых давлениях соотношение V H 2 = V O 2 ρ O 2 8 ρ H 2 будет соблюдаться, если используются реальные значения плотностей, учитывающие в том числе и эффект «неидеальности» газов.

При реализации способа реальная величина плотностей газов, соответствующая давлению в кислородной емкости, берется из справочников (например, Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей. М.: Наука, 1972 г., 814 стр.). Тем самым данное соотношение объемов автоматически обеспечивает равенство давлений газов на мембрану электролизера.

Данный способ эксплуатации электролизной системы можно реализовать с помощью известной электролизной системы заправки водородом по патенту на изобретение RU 2455394, МПК C25B 1/12, 10.07.2012 (2006.01), содержащей электролизер воды с источником питания, систему водообеспечения электролизера, газоотделители водорода и кислорода, гидравлически соединенные с электролизером и снабженные системами терморегулирования, систему управления и контроля параметров, баллоны для сбора водорода и кислорода, пневматически соединенные с газоотделителями, и известного сильфонного блока (например, авторское свидетельство №966448, 15.10.1982), содержащего емкость переменного объема.

При этом увеличивать объем водородной емкости можно как в непрерывном режиме (например, вручную), так и ступенчатым образом, что технически проще. Можно, например, увеличивать объем водорода только при определенном перепаде давлений Н2 и O2, допустимом с точки зрения прочности мембраны, разделяющей их. Для твердополимерных электролизеров допустимый перепад давления на мембране составляет обычно несколько атмосфер, однако существуют специальные конструкции ячеек, допускающие разницу давлений и более 100 атм.

В заключении необходимо отметить, что компенсировать перепад давлений на мембране электролизера можно не только увеличивая объем, занимаемый водородом, давление которого всегда больше, чем давление кислорода, но и уменьшая объем, занимаемый кислородом. Последнее, однако, нецелесообразно, поскольку технически сложнее и нежелательно с точки зрения пожаробезопасности.

Также надо отметить, что объем, занимаемый газами, в данном случае отождествляется с объемом соответствующей емкости электролизной системы. Это объясняется тем, что в обычных установках объем газовых баллонов на несколько порядков больше, чем объем полостей электролизных ячеек и арматуры (трубопроводы, клапаны и др.).

Сущность изобретения поясняется чертежом, на котором представлена схема электролизной системы, на примере которой можно осуществить предложенный способ.

Электролизная система работает следующим образом.

В процессе электролиза вода из емкости 1 под рабочим давлением, создаваемым насосом 2 по магистрали 3, поступает в электролизер 4, где разлагается на кислород и водород. Водород с жидкостью по магистрали 5 поступает в газоотделитель 7, где вода отделяется от водорода. Кислород с жидкостью по магистрали 6 поступает в газоотделитель 8, где вода отделяется от кислорода. В газоотделителях за счет теплосъемных агрегатов 9 и 10 происходит регулирование температуры газов до необходимой температуры. Водород в процессе электролиза поступает в баллоны 11 и 12, а кислород - в баллон 13. Датчик давления 14 измеряет давление кислорода, а датчик давления 15 измеряет давление водорода. Баллон водорода 12 связан с сильфонным блоком 16. К внутреннему объему сильфонного блока 16 подсоединен трубопровод, на котором установлены датчик давления 17 и электропневмоклапаны 18, 19. Трубопровод соединен с баллоном 20, на котором установлен датчик давления 21. Все датчики давления и электропневмоклапаны соединены с блоком управления 22, на который поступают сигналы от вышеуказанных агрегатов. В процессе электролиза по мере заполнения газом баллонов 11, 12 и 13 через открытый клапан 19 происходит заполнение сильфонного блока 16 по сигналам, поступающим из блока управления, 22 таким образом, что давления газов, измеряемых датчиками 14, 15 и 17, были бы равны. Это исключает перепад давлений на сильфоне в начальный период работы электролизера, когда давления в баллонах равны. В дальнейшем при повышении давления в баллонах водорода 11, 12 по командам, поступающим из блока управления 22, открывается клапан 18 и газ сбрасывается из сильфонного блока 16 и увеличивается объем баллона 12 на необходимую величину таким образом, что соотношение масс кислорода и водорода G O 2 / G H 2 = 8 остается неизменным в процессе электролиза за счет того, что соотношение объемов в процессе электролиза изменяется по закону V H 2 = V O 2 ρ O 2 8 ρ H 2 . Это обеспечивает надежную «закачку» в баллоны водорода и кислорода при высоких давлениях при соблюдении равенства давлений этих газов в процессе электролиза.

Похожие патенты RU2573575C2

название год авторы номер документа
ЭЛЕКТРОЛИЗНАЯ СИСТЕМА ЗАПРАВКИ ВОДОРОДОМ, РАБОТАЮЩАЯ ПРИ ВЫСОКОМ ДАВЛЕНИИ, И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ 2011
  • Глухих Игорь Николаевич
  • Челяев Владимир Филиппович
  • Щербаков Андрей Николаевич
RU2455394C1
СПОСОБ ЭЛЕКТРОЛИЗА ВОДЫ ПОД ДАВЛЕНИЕМ В ЭЛЕКТРОЛИЗНОЙ СИСТЕМЕ 2014
  • Глухих Игорь Николаевич
  • Челяев Владимир Филиппович
RU2568034C1
Электролизёр воды и способ его эксплуатации 2016
  • Терентьев Игорь Петрович
  • Туманин Евгений Николаевич
  • Щербаков Андрей Николаевич
RU2647841C2
Электролизная ракетная двигательная установка и способ её эксплуатации 2017
  • Терентьев Игорь Петрович
  • Щербаков Андрей Николаевич
RU2673640C1
УСТРОЙСТВО ДЛЯ ЭЛЕКТРОЛИЗА ВОДЫ И СПОСОБ ЕГО ЭКСПЛУАТАЦИИ 2012
  • Глухих Игорь Николаевич
RU2493292C1
ЭЛЕКТРОХИМИЧЕСКИЙ ВОДЯНОЙ НАСОС 2012
  • Глухих Игорь Николаевич
RU2524606C1
БОРТОВАЯ ЭЛЕКТРОЛИЗНАЯ УСТАНОВКА КОСМИЧЕСКОГО АППАРАТА 2012
  • Глухих Игорь Николаевич
RU2525350C1
УСТРОЙСТВО ДЛЯ ЭЛЕКТРОЛИЗА ВОДЫ В АРКТИЧЕСКОЙ ЗОНЕ 2021
  • Волощенко Георгий Николаевич
  • Пушкарев Артем Сергеевич
RU2769324C1
СПОСОБ ПРОИЗВОДСТВА ЖИДКОГО РАКЕТНОГО ТОПЛИВА В КОСМОСЕ 2015
  • Глухих Игорь Николаевич
  • Щербаков Андрей Николаевич
RU2591129C1
СПОСОБ ПРОИЗВОДСТВА РАКЕТНОГО ТОПЛИВА В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЁТА 2015
  • Глухих Игорь Николаевич
  • Щербаков Андрей Николаевич
RU2591131C1

Реферат патента 2016 года СПОСОБ ЭКСПЛУАТАЦИИ ЭЛЕКТРОЛИЗНОЙ СИСТЕМЫ, РАБОТАЮЩЕЙ ПРИ ВЫСОКОМ ДАВЛЕНИИ

Изобретение относится к «водородной» энергетике и может быть использовано на станциях заправки перспективного автотранспорта на топливных элементах. Способ эксплуатации электролизной системы, работающей при высоком давлении, включает процесс разложения воды электрическим током с раздельным генерированием водорода и кислорода, сбор полученных газов в емкостях с соотношением объемов соответственно 2:1 и регистрацию давления этих газов, после регистрации давления кислорода P O 2 объем водородной емкости V H 2 увеличивают до значения, определяемого соотношением: V H 2 = V O 2 ρ O 2 8 ρ H 2 , где V O 2 - объем кислородной емкости; V H 2 - объем водородной емкости; ρ O 2 - плотность кислорода при давлении P O 2 (в кислородной емкости); ρ H 2 - плотность водорода при давлении P O 2 (в водородной емкости). Техническим результатом изобретения является обеспечение надежной «закачки» в баллоны водорода и кислорода при высоких давлениях при соблюдении равенства давлений этих газов в процессе электролиза. 1 ил.

Формула изобретения RU 2 573 575 C2

Способ эксплуатации электролизной системы, работающей при высоком давлении, включающий процесс разложения воды электрическим током с раздельным генерированием водорода и кислорода, сбор полученных газов в емкостях с соотношением объемов соответственно 2:1 и регистрацию давления этих газов, отличающийся тем, что после регистрации давления кислорода P O 2 объем водородной емкости V H 2 увеличивают до значения, определяемого соотношением: ,
где
V O 2 - объем кислородной емкости;
V H 2 - объем водородной емкости;
ρ O 2 - плотность кислорода при давлении P O 2 (в кислородной емкости);
ρ H 2 - плотность водорода при давлении P O 2 (в водородной емкости).

Документы, цитированные в отчете о поиске Патент 2016 года RU2573575C2

ЭЛЕКТРОЛИЗНАЯ СИСТЕМА ЗАПРАВКИ ВОДОРОДОМ, РАБОТАЮЩАЯ ПРИ ВЫСОКОМ ДАВЛЕНИИ, И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ 2011
  • Глухих Игорь Николаевич
  • Челяев Владимир Филиппович
  • Щербаков Андрей Николаевич
RU2455394C1
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА И КИСЛОРОДА МЕТОДОМ ЭЛЕКТРОЛИЗА 1997
  • Красноперов В.П.
  • Кершенбаум В.Я.
  • Кац И.Ф.
  • Ламдон С.Е.
  • Изместьев А.В.
RU2111285C1
DE 102012018243 A1, 20.03.2014.

RU 2 573 575 C2

Авторы

Челяев Владимир Филиппович

Глухих Игорь Николаевич

Щербаков Андрей Николаевич

Даты

2016-01-20Публикация

2014-06-10Подача