ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ С ПУЛЬСИРУЮЩИМ РЕЖИМОМ ГОРЕНИЯ Российский патент 2016 года по МПК F02K7/16 

Описание патента на изобретение RU2575496C2

Изобретение относится к области авиации и может быть использовано в двигателестроении летательных аппаратов.

Известен «СПОСОБ РАБОТЫ СВЕРХЗВУКОВОГО ПУЛЬСИРУЮЩЕГО ПРЯМОТОЧНОГО ВОЗДУШНО-РЕАКТИВНОГО ДВИГАТЕЛЯ И СВЕРХЗВУКОВОЙ ПУЛЬСИРУЮЩИЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ» RU 2347098 [1], содержащий воздухозаборник, камеру сгорания, сопло, устройство периодической подачи топлива, камера сгорания выполнена из последовательно размещенных друг за другом расширяющихся участков с устройствами для импульсно-периодической подачи топлива в места стыка участков и через пилоны, размещенные в потоке каждого участка, при этом участки камеры сгорания выполнены так, что входное сечение последующего участка больше выходного сечения предыдущего участка, причем количество участков и их геометрические параметры задают из условия сохранения сверхзвуковой скорости нестационарного потока по всему каналу камеры сгорания.

Недостатком является низкая эффективность, обусловленная снижением давления в рабочей камере, обусловленное расширяющимися участками камеры сгорания.

Наиболее близким к заявляемому техническому решению является «СВЕРХЗВУКОВОЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ С ПУЛЬСИРУЮЩИМ РЕЖИМОМ ГОРЕНИЯ (СПВРД С ПРГ) И СПОСОБ ЕГО РАБОТЫ» RU 2446305 [2], содержащий воздухозаборник, камеру сгорания, состоящую из участков (постоянного и) переменного сечения, сопло, несколько инжекторов (поясов подачи) топлива, размещенных по длине камеры сгорания, устройство инициирования пульсирующего режима горения (и датчики регистрации прохождения волн давления на участке камеры сгорания постоянного сечения), первый инжектор (пояс подачи) топлива расположен в начале участка постоянного сечения, а последующие - на участках переменного сечения камеры сгорания.

Известная конструкция обладает более высокой эффективностью по сравнению с [1] благодаря повышению давления в рабочей камере.

Недостатком известной конструкции является низкая удельная тяга двигателя (отношение силы тяги двигателя к его весу). Недостатком также является сниженная устойчивость двигателя при низких скоростях входящего потока воздуха. Известный двигатель недостаточно энергоэффективен вследствие частичного выхода газов в обратном направлении, навстречу движению.

Техническим результатом предлагаемого изобретения является повышение стабильности работы, особенно на дозвуковых скоростях, повышение коэффициента тяги двигателя, повышение эффективности (коэффициента полезного действия).

Технический результат достигается тем, что прямоточный воздушно-реактивный двигатель (ПВРД), содержащий основной воздухозаборник, основную камеру сгорания, камеру переменного сечения, смесительную камеру, основное сопло, основной инжектор топлива, устройство инициирования пульсирующего режима горения, характеризуется тем, что дополнительно содержит серию мини воздушно-реактивных двигателей (МВРД), каждый из которых снабжен воздухозаборником (МВРД), камерой переменного сечения (МВРД), инжектором топлива (МВРД) и камерой сгорания (МВРД), причем мини-двигатели примыкают к внутренним стенкам камеры переменного сечения.

Мини-двигатели (МВРД) могут быть ориентированы вдоль спирали, ориентированы вдоль этой же спирали и могут быть расположены в три продольных ряда. Указанное расположение и ориентация мини-двигателей позволит дополнительно повысить силу тяги двигателя благодаря повышению направленности потока газов при синхронной работе двигателей, обеспечивающей продольную волну давления и потока газов в воздухозаборнике двигателя.

Передняя (торцевая) кромка воздухозаборника может выполняться острой. Выполнение кромки острой позволит снизить лобовое сопротивление двигателя, что позволит дополнительно повысить его эффективность.

Во внутреннем пространстве воздухозаборника может располагаться обратимая турбина с лопастями. Наличие турбины с лопастями может дополнительно повысить эффективность двигателя при малых скоростях входящего воздуха, облегчить пуск двигателя, а также обратимая турбина с лопастями может служить генератором электроэнергии после набора крейсерской скорости летательным аппаратом, снабженным предлагаемым двигателем.

На фиг. 1 изображен поперечный разрез предлагаемого двигателя (ПВРД), изготовленного с применением п. 1, 4 и 5, на фиг. 2 - вид спереди, на фиг. 3 - вид мини-двигателя (МВРД), где:

1 - корпус;

2 - основной воздухозаборник;

3 - основная камера сгорания;

4 - основное сопло;

5 - камера переменного сечения;

6 - основной инжектор топлива;

7 - основная смесительная камера;

8 - обратимая турбина с лопастями;

9 - мини-двигатель (МВРД);

10 - инжектор мини-двигателя;

11 - воздухозаборник мини-двигателя;

12 - камера сгорания мини-двигателя;

13 - сопло мини-двигателя;

14 - направление ориентации мини-двигателя;

15 - аэродинамические стойки;

16 - смесительная камера мини-двигателя;

17 - направление потока воздуха мини-двигателя;

18 - камера переменного сечения мини-двигателя.

Устройство действует следующим образом. В торцевой части корпуса 1 расположен основной воздухозаборник 2, переходящий в широкую часть камеры переменного сечения 5 (аэродинамический диффузор). Камера переменного сечения монотонно сужается от воздухозаборника к камере сгорания. Камера переменного сечения может быть выполнена, например, в форме фрагмента гиперболоида (фигуры, получаемой вращением гиперболы вокруг оси, совпадающей с осью двигателя). Камера переменного сечения 5 наиболее узкой частью примыкает к основной смесительной камере 7, которая, например, может иметь цилиндрическую форму, которая примыкает в свою очередь к основной камере сгорания 3, например, сферической формы. Выход газов осуществляется через основное сопло 4. Основной инжектор топлива 6 расположен в основной смесительной камере 7. Мини воздушно-реактивные двигатели (МВРД) 9 примыкают к внутренним стенкам камеры переменного сечения 5. Каждый МВРД 9 содержит инжектор мини-двигателя 10, воздухозаборник мини-двигателя 11, переходящий в камеру переменного сечения 18, переходящую в свою очередь, в смесительную камеру мини-двигателя 16, камеру сгорания мини-двигателя 12 и сопло мини-двигателя 13. Мини-двигатели ориентированы под углом наклона, показанным поз. 14, близким к углу наклона спирали в точке крепления мини-двигателя, например, углы между мини-двигателями и осью основного воздухозаборника могут быть в пределах от 40 до 70 градусов. В торцевой части воздухозаборника может располагаться турбина с лопастями 8, закрепленная посредством аэродинамических стоек 15 для облегчения пуска двигателя и получения электроэнергии во время работы двигателя.

Запуск двигателя происходит путем включения обратимой турбины с лопастями (компрессор-генератора) и первоначального нагнетания воздушного потока. Воздушный поток пойдет по трем спиралям под углом 60 градусов к оси двигателя. При включении МВРД в инжекторы МВРД подаются дозы топлива, как минимум первые три МВРД снабжены средствами воспламенения рабочей смеси (например, свечами). Через некоторое время, после достижения пламени от одного ряда МВРД к следующему ряду, в соответствующий ряд МВРД подается очередная доза топлива, образуя цепочку направленных взрывов, образующих волну, которая увлекает за собой воздух в двигатель. Направление потока воздуха одного из МВРД показано поз. 17. В рабочем режиме воздух внутри камеры переменного сечения движется вдоль спирали, по которой расположены МВРД 9 благодаря последовательной работе МВРД. МВРД выполняют роль лопаток турбины, создавая поток воздуха через двигатель. В области минимального сечения камеры переменного сечения, совпадающей с областью максимальной скорости потока газов, расположен основной инжектор топлива, которое смешивается с воздухом и поступает в основную камеру сгорания, затем в основное сопло. Поток воздуха и топлива имеет кроме линейной составляющей, направленной вдоль двигателя, круговую составляющую, которая попадает в основную камеру сгорания с отрицательной кривизной, происходит трансформация кинетической энергии потока в потенциальную благодаря повышению давления в основной камере сгорания, которое приводит к взрыву смеси. Выхлопные газы выходят в основное сопло, а за счет давления газов на переднюю стенку основной камеры сгорания происходит движение вперед двигателя и всего летательного аппарата в целом.

Путь движения потока по спирали увеличивает длину движения рабочего тела, что приводит к повышению эффективности. Закрученный поток увеличивает время сгорания и сгораемость топлива, что позволяет применять горючее с более тяжелыми, длинными молекулами. Силы давления от каждой группы форсунок складываются, что приводит к повышению давления в двигателе.

При повышении скорости входящего воздуха МВРД и основной двигатель можно перевести из пульсирующего режима горения в режим постоянного горения.

Технический результат - повышение стабильности работы, особенно на дозвуковых скоростях достигается последовательным режимом горения топлива, обеспечивающим поток воздуха даже при стоящем двигателе.

Технический результат - повышение удельного коэффициента тяги двигателя (отношение силы тяги двигателя к его весу) достигается наличием сил, вызываемых работой мини-двигателей, дополнительно движущих потоки воздуха в воздухозаборнике.

Технический результат - повышение эффективности (коэффициента полезного действия) достигается более аэродинамически несимметричной конструкцией, предотвращающей движение газов в обратном направлении, позволяющей повысить эффективность реактивной отдачи от двигателя.

Промышленное применение. Изобретение может с успехом применяться при производстве реактивных двигателей с универсальным режимом горения для летательных аппаратов.

Похожие патенты RU2575496C2

название год авторы номер документа
ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ ЭДУАРДА СОЛОВЬЕВА 2014
  • Соловьев Эдуард Иванович
RU2585160C1
СПОСОБ СОЗДАНИЯ ТЯГИ И СИЛОВАЯ УСТАНОВКА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2017
  • Юриков Евгений Петрович
  • Андреев Владимир Иванович
RU2680214C1
Универсальный реактивный двигатель (УРД) 2019
  • Решетников Михаил Иванович
RU2754976C2
РЕАКТИВНЫЙ ДВИГАТЕЛЬ 2002
  • Орлов А.И.
  • Орлов И.А.
RU2236610C2
СПОСОБ ОРГАНИЗАЦИИ ГОРЕНИЯ В ГИПЕРЗВУКОВОМ ПРЯМОТОЧНОМ ВОЗДУШНО-РЕАКТИВНОМ ДВИГАТЕЛЕ И ГИПЕРЗВУКОВОЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ (ВАРИАНТЫ) 1994
  • Пузырев Л.Н.
  • Ярославцев М.И.
RU2082017C1
Способ приведения во вращение ротора с помощью реактивного двигателя 2021
  • Бормотов Андрей Геннадьевич
  • Плешков Дмитрий Васильевич
  • Шишов Александр Валерьевич
RU2762982C1
ПРЯМОТОЧНЫЙ ТУРБОРЕАКТИВНЫЙ ДЕТОНАЦИОННЫЙ ДВИГАТЕЛЬ (ПТРДД) 2016
  • Кожевников Дмитрий Дмитриевич
RU2638239C1
ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ С РЕГУЛИРУЕМОЙ ТЯГОЙ, ИСПОЛЬЗУЮЩИЙ ПАКЕТИРОВАННОЕ ТОПЛИВО 2011
  • Мансон Дэвид Мюррей Дж.
  • Коллиер Николас
RU2564728C2
ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ ДЛЯ ЛЕТАТЕЛЬНОГО АППАРАТА 2004
  • Прудников Александр Григорьевич
  • Соколовский Геннадий Александрович
  • Яновский Юрий Григорьевич
RU2269022C2
ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ НА ТВЕРДОМ ТОПЛИВЕ И СПОСОБ ЕГО ФУНКЦИОНИРОВАНИЯ 2021
  • Фролов Сергей Михайлович
  • Иванов Владислав Сергеевич
  • Фролов Фёдор Сергеевич
  • Авдеев Константин Алексеевич
  • Шиплюк Александр Николаевич
  • Звегинцев Валерий Иванович
  • Наливайченко Денис Геннадьевич
  • Внучков Дмитрий Александрович
RU2796043C2

Иллюстрации к изобретению RU 2 575 496 C2

Реферат патента 2016 года ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ С ПУЛЬСИРУЮЩИМ РЕЖИМОМ ГОРЕНИЯ

Изобретение относится к области авиации и может быть использовано в двигателестроении летательных аппаратов. Прямоточный воздушно-реактивный двигатель содержит основной воздухозаборник, основную камеру сгорания, камеру переменного сечения, смесительную камеру, основное сопло, основной инжектор топлива, устройство инициирования пульсирующего режима горения. Прямоточный воздушно-реактивный двигатель дополнительно содержит серию мини воздушно-реактивных двигателей, каждый из которых снабжен воздухозаборником, камерой переменного сечения, инжектором топлива и камерой сгорания. Мини-двигатели примыкают к внутренним стенкам камеры переменного сечения, расположены вдоль спирали и ориентированы вдоль этой же спирали. Мини-двигатели расположены в три продольных ряда. Изобретение направлено на повышение стабильности работы, особенно на дозвуковых скоростях, повышение коэффициента тяги двигателя, повышение эффективности. 4 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 575 496 C2

1. Прямоточный воздушно-реактивный двигатель, содержащий основной воздухозаборник, основную камеру сгорания, камеру переменного сечения, смесительную камеру, основное сопло, основной инжектор топлива, устройство инициирования пульсирующего режима горения, отличающийся тем, что дополнительно содержит серию мини воздушно-реактивных двигателей, каждый из которых снабжен воздухозаборником, камерой переменного сечения, инжектором топлива и камерой сгорания, причем мини-двигатели примыкают к внутренним стенкам камеры переменного сечения.

2. Двигатель по п. 1, отличающийся тем, что мини-двигатели расположены вдоль спирали и ориентированы вдоль этой же спирали.

3. Двигатель по п. 1, отличающийся тем, что мини-двигатели расположены в три продольных ряда.

4. Двигатель по п. 1, отличающийся тем, что воздухозаборник имеет острую переднюю кромку.

5. Двигатель по п. 1, отличающийся тем, что во внутреннем пространстве воздухозаборника расположена обратимая турбина с лопастями.

Документы, цитированные в отчете о поиске Патент 2016 года RU2575496C2

ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ 2000
  • Нурмухаметов И.Р.
RU2243400C2
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ ГЛУЗДАКОВА Ю.С. 1993
  • Глуздаков Юрий Семенович
RU2078968C1
Способ непрерывного ультразвукового приготовления низкотемпературного органического теплоносителя на основе фенилалкана и устройство для его осуществления 2019
  • Гладилин Алексей Викторович
  • Семёнов Андрей Григорьевич
RU2709889C1
GB 1230203 A, 28.04.1971
GB 2045870 A, 05.11.1980
СПОСОБ ПОЛУЧЕНИЯ НЕФТЯНОЙ СПЕКАЮЩЕЙ ДОБАВКИ 2018
  • Герасимов Михаил Георгиевич
  • Лысенко Алексей Владимирович
  • Запорин Виктор Павлович
RU2709595C1

RU 2 575 496 C2

Авторы

Соловьев Эдуард Иванович

Даты

2016-02-20Публикация

2014-05-14Подача