ПРОГРАММНО-УПРАВЛЯЕМАЯ НАГНЕТАТЕЛЬНАЯ СКВАЖИНА Российский патент 2016 года по МПК E21B43/12 E21B43/20 

Описание патента на изобретение RU2578078C2

Изобретение относится к горному делу, в частности к добыче нефти, и может быть использовано для вытеснения нефти из нефтеносных пластов к добывающим скважинам.

Известна установка для закачки водогазовой смеси в нефтяной пласт, содержащая эжектор-смеситель с линиями подачи газа и воды, на выходе которого установлен насосный агрегат, сепаратор высокого давления для отделения избыточного количества воды, выход которого гидравлически связан с насосным агрегатом, нагнетательную скважину с колонной насосно-компрессорных труб, снабженной пакером и образующей со скважиной межтрубное пространство, линию подачи водогазовой смеси, соединяющую насосный агрегат с нагнетательной скважиной, линию сброса воды, гидравлически связывающей сепаратор и линию подачи воды в насосный агрегат. Сепаратор выполнен в виде цилиндрической камеры, на входе которой неподвижно по оси камеры установлен шнековый завихритель потока, а нижняя часть камеры выполнена в виде патрубка, направленного внутрь камеры, на внешней стороне которой выполнены каналы для отвода отсепарированной воды в межтрубное пространство. Сепаратор установлен на колонне насосно-компрессорных труб над пакером, линия сброса воды сепаратора проходит через межтрубное пространство. На линиях подачи газа, воды и сброса воды из сепаратора установлены расходомеры и регулирующие клапаны с возможностью управления контроллером, на вход которого обеспечена подача показаний расходомеров, а выходного сигнала - на регулирующие клапаны для обеспечения поддержания оптимального газосодержания в водогазовой смеси при ее закачке. Установка снабжена емкостью для поверхностно-активного вещества с дозирующим насосом, выходной патрубок которого гидравлически связан с линией подачи воды в эжектор-смеситель (Патент RU №136082 U1 «Установка подготовки и закачки мелкодисперсной водогазовой смеси (МДВГС) в пласт». - МПК: E21B 43/16. - 27.12.2013).

Известно устройство для закачки газа в пласт, включающее источник газа, газоэжекторную установку, трубопровод и нагнетательную скважину со спущенными насосно-компрессорными трубами с пакером, компрессор с гидрозатвором, расположенным между газоэжекторной установкой и нагнетательной скважиной (Патент RU №92906 U1 «Установка для закачки газа в пласт». - МПК: E21B 43/00. - 10.04.2010).

Известна нагнетательная скважина для утилизации попутно добываемого нефтяного газа, содержащая насос с электродвигателем, трубопроводы для подачи воды и попутного нефтяного газа, жидкостно-газовый эжектор и пакер с вмонтированной трубой. Насос с электродвигателем и смесительное устройство размещены внутри нагнетательной скважины, насос установлен под электродвигателем, последний снабжен кожухом, соединенным с трубопроводом для подачи воды (Патент RU №143281 U1 «Нагнетательная скважина для утилизации попутного нефтяного газа». - МПК: E21B 43/00. - 20.07.2014).

Известна установка для воздействия на застойную зону интервалов пластов скважины, содержащая нагнетательную скважину с устьевой запорной арматурой, включающей запорно-перепускное устройство в виде задвижки или клапана с электроприводом, соединенные посредством общего вала, редуктора или цепной передачи, или электрогидроприводом с электронасосом, расположенным в одном корпусе и соединенные посредством гидравлического канала, по меньшей мере, один пакер, насосно-компрессорные трубы, устройство для измерения скважинных параметров датчиками давления, температуры и расходомером устьевого или глубинного исполнения, и/или устройство для измерения времени в виде таймера устьевого или глубинного исполнения, соединенные электрическим кабелем с устройством управления, расположенные в скважине и/или на устье, и станцию управления. Станция управления включает в себя управляющий компьютер или управляющий контроллер с программным обеспечением, соединенные с электроприводом или электрогидроприводом, расположенные в их корпусах или на станции управления (Патент RU №2529072 C2 «Способ воздействия на застойную зону интервалов пластов Гарипова и установка для его реализации». - МПК: E21B 43/14, E21B 43/18. - 27.09.2014). Данное изобретение принято за прототип.

Недостатком известных технических решений по закачке рабочего агента в пласты скважины, принятого за прототип, является недостаточное вытеснение нефти из нефтеносных пластов к добывающим скважинам, снижающей дебит многопластовых скважин.

Основной задачей, на решение которой направлено заявляемое изобретение, является повышение дебита путем программно-регулируемого вытеснения нефти из нефтеносных пластов к добывающим скважинам.

Техническим результатом является повышение дебита нефтеносных пластов.

Указанный технический результат достигается тем, что в известной программно-управляемой нагнетательной скважине, содержащей обсадную трубу, перфорированную на уровне нефтеносных пластов, в которой размещена колонна насосно-компрессорных труб и пакеры, установленные над нефтеносными пластами, устьевую запорно-перепускную арматуру, силовой насос с частотно-регулируемым электроприводом, газожидкостный эжектор-смеситель, емкость с поверхностно-активным веществом, дожимной насос и гидрозатвор, сообщающиеся трубопроводами, станцию управления, силовые кабеля, питающие насосы, и регулировочные клапаны, управляемые устройством управления, содержащим управляющий контроллер с программным обеспечением, устройство измерения пластовых параметров с датчиками телеметрии и расходомером, связанных геофизическим кабелем, согласно предложенному техническому решению, регулировочные клапаны выполнены единым блоком телемеханической системы с возможностью программно-управляемого поддержания пластовых давлений с помощью управляющего контроллера с программным обеспечением и учета расхода рабочего агента, соединенным со стволом верхнего пакера посредством стыковочного узла, состоящего из подвижных соединений гладких ниппелей и концевых штуцеров, последние установлены на прямоточной многоканальной муфте, образующие коаксиальные проточные каналы, а датчики телеметрии и расходомер размещены в полостях гильз, параллельно расположенных в полости корпуса блока телемеханической системы и связанных с контрольно-измерительными приборами на станции управления, при этом к центральному каналу прямоточной многоканальной муфты присоединен трубчатый хвостовик, герметически установленный противоположным концом в центральном отверстии муфты, встроенной в колонну труб между вышеупомянутыми пакерами и выполненной с радиальными проточными каналами, сообщающими коаксиальный проточный канал стыковочного узла с верхним пластом скважины через межпакерное пространство, и центральный проточный канал - с нижним пластом через полости хвостовика и ствола нижнего пакера, при этом блок телемеханической системы присоединен патрубком к колонне насосно-компрессорных труб посредством стыковочной муфты, выполненной со сквозными пазами, и связан с устройством управления геофизическим кабелем, пропущенным через сквозной паз стыковочной муфты и лубрикатор, установленный на торце обсадной трубы, а к колонне насосно-компрессорных труб присоединен дополнительный пакер с кабельным вводом и нажимным якорным устройством, образующий с пакером, расположенным выше верхнего пласта, нагнетательный коллектор, сообщающий полость колонны насосно-компрессорных труб через сквозные пазы стыковочной муфты с полостью корпуса блока телемеханической системы через окна, выполненные в стенке корпуса;

геофизический кабель подсоединен к блоку телемеханической системы посредством кабельного разъема, штырь которого закреплен в патрубке, а розетка на дне стыковочной муфты;

трубы, соединяющие пакеры, расположенные выше нефтеносных пластов, герметически соединены подвижной разъединительной муфтой;

в газопровод подвода газа от внешнего источника в приемную камеру газожидкостного эжектора-смесителя встроены регулируемая задвижка и обратный клапан;

в трубопровод подачи поверхностно-активного вещества из емкости в приемную камеру газожидкостного эжектора-смесителя встроены регулируемая задвижка и обратный клапан.

Приведенный заявителем анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностями признаков, тождественными всем признакам заявленной программно-управляемой нагнетательной скважины, отсутствуют. Следовательно, заявляемое техническое решение соответствует условию патентоспособности «новизна».

Результаты поиска известных решений в данной области техники с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявляемого технического решения, показали, что они не следуют явным образом из уровня техники. Из определенного заявителем уровня техники не выявлена известность влияния предусматриваемых существенными признаками заявляемого технического решения преобразований на достижение указанного технического результата. Следовательно, заявляемое техническое решение соответствует условию патентоспособности «изобретательский уровень».

Заявленное техническое решение может быть использовано на нефтегазовых скважинах. Следовательно, заявляемое техническое решение соответствует условию патентоспособности «промышленная применимость».

На представленной фигуре 1 схематично показана программно-управляемая нагнетательная скважина.

Программно-управляемая нагнетательная скважина содержит обсадную трубу 1, перфорированную на уровне нефтеносных пластов I и II, в которой размещена колонна 2 насосно-компрессорных труб (НКТ) с пакером 3 на ее конце, оснащенным нажимным якорным устройством и кабельным вводом, пакер 4, расположенный выше верхнего нефтеносного пласта I и оснащенный нажимным якорным устройством, и пакер 5, расположенный выше нижнего нефтеносного пласта II и оснащенный опорным якорным устройством, блок 6 телемеханической системы (ТМС) с возможностью программно-управляемого поддержания пластовых давлений с помощью управляющего контроллера с программным обеспечением и учета расхода рабочего агента, нагнетаемого в нефтеносные пласты I и II, встроенного в устройство управления (УУ), последнее установлено на станции управления (СУ) скважиной, и приустьевую насосно-эжекторную установку нагнетания рабочего агента в колонну 2 НКТ, содержащую силовой насос 7 с частотно-регулируемым электроприводом 8, сообщающийся входом с водопроводом 9 от источника воды с запорным краном 10, газожидкостный эжектор-смеситель 11 входами с газопроводом 12 от источника газа, оснащенным регулируемой задвижкой 13 и обратным клапаном 14, емкостью с поверхностно-активным веществом (ПАВ) трубопроводом 15, оснащенным регулируемой задвижкой 16 и обратным клапаном 17, и водопроводом 18 с выпуском силового насоса 7. Выброс рабочего агента из газожидкостного эжектора-смесителя 11 сообщается с колонной 2 НКТ через устьевую запорно-перепускную арматуру 19 по трубопроводу 20, в последний последовательно встроены дожимной насос 21 и гидрозатвор 22. СУ соединена силовым кабелем 23 с частотно-регулируемым электроприводом 8 силового насоса 7 и силовым кабелем 24 с электроприводом дожимного насоса 21. Корпус 25 блока 6 ТМС патрубком 26 герметически присоединен сверху к стволу пакера 3 посредством стыковочной муфты 27, выполненной с радиальными сквозными пазами 28, а снизу - многоканальным стыковочным узлом 29 со стволом пакера 4, который соединен со стволом пакера 5 колонной труб 30, последние соединены между собой подвижной разъединительной муфтой 31, с возможностью поочередной посадки в обсадной трубе 1 пакеров 4 и 5, блока 6 ТМС и последовательного их демонтажа.

Блок 6 ТМС включает регулировочные клапаны 32 с электроприводами 33 программного управления, встроенными в корпус 25 блока 6 ТМС, взаимодействующие с запорными седлами 34, с возможностью программно-регулируемого нагнетания рабочего агента и поддержания пластового давления в соответствующих нефтеносных пластах скважины посредством управляющего контроллера с программным обеспечением и датчиков телеметрии и расходомера, позволяющих отслеживать фактические параметры закачиваемого рабочего агента (давление, температуру и расход) в нефтеносные пласты I и II. Датчики телеметрии и расходомер размещены в полостях гильз 35, параллельно расположенных в полости корпуса 25 блока 6 ТМС, сообщающихся с коаксиальными проточными каналами многоканального стыковочного узла 29.

Многоканальный стыковочный узел 29 состоит из подвижных соединений гладких ниппелей 36 с направляющим конусом и, по меньшей мере, одной кольцевой манжетой, пристыкованных к корпусу 25 блока 6 ТМС, и концевых штуцеров 37 с развальцованным торцом, образующих трубчатые элементы с коаксиальными проточными каналами и установленных в прямоточной многоканальной муфте 38, выполненной с центральным и периферийными прямоточными каналами, соединенной, в свою очередь, со стволом пакера 4. В колонне труб 30 встроена муфта 39 с радиальными проточными каналами 40, в центральном отверстии которой герметически установлен конец трубчатого хвостовика 41, встроенный другим концом в центральный прямоточный канал многоканальной муфты 38, образующий со стволом пакера 4 и колонной труб 30 коаксиальные каналы, сообщающие коаксиальный проточный канал стыковочного узла 29 через периферийные прямоточные каналы многоканальной муфты 38 и радиальные каналы муфты 39 с верхним пластом I скважины через межпакерное пространство 42, и центральный проточный канал - с нижним пластом II через полости хвостовика 41, колонну труб 30 и ствола нижнего пакера 5.

Пакер 3 образует с пакером 4 нагнетательный коллектор 43, сообщающий полость колонны 2 НКТ через сквозные пазы 28 стыковочной муфты 27 с обособленными каналами 35 блока 6 ТМС через полость корпуса 25 и окна 44, выполненные в стенке корпуса 25.

Блок 6 ТМС связан с УУ геофизическим кабелем 45, пропущенным через радиальный сквозной паз 28 стыковочной муфты 27 и лубрикатор 46, установленный на торце обсадной трубы 1, для передачи управляющих команд электроприводам 33 регулировочных клапанов 32 от управляющего контроллера УУ и контрольной информации от датчиков телеметрии и расходомера на контрольно-измерительные приборы СУ по геофизическому кабелю 45. Геофизический кабель 45 подсоединен к блоку 6 ТМС посредством кабельного разъема 47, штырь которого закреплен в патрубке 26, а розетка на дне стыковочной муфты 27, с возможностью раздельной посадки и демонтажа блока 6 ТМС и пакера 3.

Монтаж программно-управляемой нагнетательной скважины осуществляют в несколько этапов.

Первым этапом над устьем нагнетательной скважины к стволу пакера 5 с опорным якорным устройством присоединяют нижнюю часть колонны труб 30 и в сборе с помощью колонны 2 НКТ из устья нагнетательной скважины спускают в обсадную трубу 1, в которой возвратно-поступательными перемещениями колонны 2 НКТ пакер 5 закрепляют над нефтеносным пластом II посредством опорного якорного устройства.

Вторым этапом над устьем нагнетательной скважины к стволу пакера 4 с нажимным якорным устройством присоединяют верхнюю часть колонны труб 30 с муфтой 39 и подвижной разъединительной муфтой 31 на конце, а сверху ствола пакера 4 присоединяют прямоточную многоканальную муфту 38 с концевыми штуцерами 37 многоканального стыковочного узла 29. При этом в центральном отверстии прямоточной многоканальной муфты 38 снизу герметически присоединяют конец трубчатого хвостовика 41, который другим концом герметически встраивают в центральное отверстие муфты 39, образующий со стволом пакера 4 и колонной труб 30 коаксиальный проточный канал, сообщающийся с радиальными каналами муфты 39. Затем в сборе за наружный концевой штуцер 37 многоканального стыковочного узла 29 с помощью колонны 2 НКТ их из устья нагнетательной скважины спускают в обсадную трубу 1, в которой возвратно-поступательными перемещениями колонны 2 НКТ с последующим нажимом на пакер 4 через колонну труб 30 последние герметически соединяют между собой посредством подвижной разъединительной муфты 31. Далее, по мере увеличения нагрузки на пакер 4 разобщают межтрубное пространство пакером 5 между пластами I и II и пакером 4 - выше пласта I, и нажимом на опорное якорное устройство пакера 5 нажимным якорным устройством пакера 4, пакера 4 и 5 закрепляют в рабочем состоянии с образованием межпакерного пространства 42.

Третьим этапом над устьем нагнетательной скважины к корпусу блока 6 ТМС присоединяют гладкие ниппели 36 с направляющим конусом и, по меньшей мере, одной кольцевой манжетой, многоканального стыковочного узла 29 и в сборе за патрубок 26 с розеткой кабельного разъема 47 блока 6 ТМС с помощью колонны 2 НКТ спускают из устья нагнетательной скважины в обсадную трубу 1 до соединения гладких ниппелей 36 с концевыми штуцерами 37 многоканального стыковочного узла 29.

Четвертым этапом над устьем нагнетательной скважины к стволу пакера 3 с кабельным вводом и нажимным якорным устройством снизу присоединяют стыковочную муфту 27, а сверху - колонну 2 НКТ, геофизический кабель 45, герметически пропущенный через кабельный ввод пакера 3, радиальный сквозной паз 28 стыковочной муфты 27 и соединенный со штырем кабельного разъема 47, закрепленным в дне стыковочной муфты 27. Затем в сборе спускают из устья нагнетательной скважины в обсадную трубу 1 до соединения стыковочной муфты 27 с патрубком 26 блока 6 ТМС, а также соединяют штырь и розетку кабельного разъема 47. После этого возвратно-поступательными перемещениями колонны 2 НКТ по мере увеличения нагрузки нажимным якорным устройством пакера 3 последний закрепляют в рабочем состоянии с образованием между пакерами 3 и 4 межпакерного нагнетательного коллектора 43. Конец геофизического кабеля 45 пропускают через лубрикатор 46, закрепленный на торце обсадной трубе 1, и присоединяют к УУ. После этого колонну 2 НКТ устьевой запорно-перепускной арматурой 19 соединяют с приустьевой насосно-эжекторной установкой нагнетания рабочего агента в колонну 2 НКТ.

Программно-управляемая нагнетательная скважина работает следующим образом.

Закачку рабочего агента, создаваемого приустьевой насосно-эжекторной установкой, проводят через колонну 2 НКТ в нефтеносные пласты I и II. Для этого открывают запорный кран 10 на водопроводе 9, соединенном с источником воды, и регулируемую задвижку 13 на газопроводе 12, соединенном с источником газа, и устьевую запорно-перепускную арматуру 19 на колонне 2 НКТ. От источника воды по водопроводу 9 силовым насосом 7 посредством частотно-регулируемого электропривода 8 с электропитанием от СУ по силовому кабелю 23 воду под давлением в пределах 5-10 МПа подают по водопроводу 18 в рабочее сопло газожидкостного эжектора-смесителя 11. При высокой скорости протекания потока воды из рабочего сопла в камеру смешения газожидкостного эжектора-смесителя 11 в его приемной камере создается разрежение, куда всасывается газ от источника газа по газопроводу 12, одновременно с ним для увеличения вязкости рабочего агента открывают регулируемую задвижку 16 на трубопроводе 15, по которому из емкости ПАВ в приемную камеру газожидкостного эжектора-смесителя 11 периодически добавляют пенообразующие ПАВ. В камере смешения газожидкостного эжектора-смесителя 11 происходит смешивание потоков воды, газа и пенообразующего ПАВ с образованием рабочего агента с концентрацией ПАВ в пределах 0,5-1,1% для закачки его в нефтеносные пласты I и II. На выходе из диффузора газожидкостного эжектора-смесителя 11 рабочий агент имеет некоторое повышенное давление в пределах 6-7 МПа, которого, однако, недостаточно для эффективной закачки его, по крайней мере, в один из нефтеносных пластов II и/или II. Поэтому после выброса рабочего агента из диффузора газожидкостного эжектора-смесителя 11 нагнетание рабочего агента по трубопроводу 20 увеличивают дожимным насосом 21 с электропитанием от СУ по силовому кабелю 24, после которого его закачивают через колонну 2 НКТ, ствол пакера 3, стыковочную муфту 27 и ее радиальные сквозные пазы 28 в межпакерный нагнетательный коллектор 43 под давлением до 15 МПа. Далее рабочий агент под этим давлением через окна 44 в корпусе блока 6 ТМС поступает в полость корпуса блока 6 ТМС и далее, в соответствии с технологической картой режимов эксплуатации добывающих скважин, через просветы запорных седел 34, частично или полностью перекрываемые регулировочными клапанами 32 посредством электроприводов 33 программного управления, перетекает в полости гильз 35, омывая датчики телеметрии и расходомер, далее через коаксиальные каналы многоканального стыковочного узла 29, центральный и периферийные прямоточные каналы многоканальной муфты 38 поступает в соответствующие нефтеносные пласты I и/или II. Регулировочные клапаны 32 блока 6 ТМС управляются электроприводами 33 программного управления путем передачи им управляющих команд от контроллера с программным управлением УУ по геофизическому кабелю 16 с обратной связью информации от датчиков телеметрии и расходомера блоков 6 ТМС с отображением результатов измерения параметров нефтеносных пластов I и II на контрольно-измерительных приборах (КИП), размещенных на СУ. Давление нагнетания рабочего агента в колонну 2 НКТ и нефтеносные пласты I и II задают по дебиту добывающих скважин. Открытие всех запорных седел 33 регулировочными клапанами 32 в блоке 6 ТМС обеспечивает быстрое заполнение нефтеносных пластов I и II рабочим агентом, а перекрытие всех запорных седел 33 срабатывает как «закрыто». Комбинирование открытия и закрытия запорных седел 33 регулировочными клапанами 32 блока 6 ТМС позволяет дифференцированно регулировать потоки рабочего агента в нефтеносные пласты I и II как по времени, так и по расходу рабочего агента до необходимого давления в том или другом нефтеносном пласте I или II, что позволяет производить программно-регулируемое поддержание пластового давления в нефтеносных пластах I и II для вытеснения нефти в нефтедобывающие скважины.

Чтобы избежать кавитационного сбоя в работе дожимного насоса 21 из-за вредного влияния свободного газа, его содержание в рабочем агенте регулируют изменением подачи газа посредством регулируемой задвижки 13 на газопроводе 12 подачи газа в газожидкостный эжектор-смеситель 11, и/или пенообразующих свойств рабочего агента посредством регулируемой задвижки 16 на трубопроводе 15, соединенном с емкостью, заполненной ПАВ, и/или регулирования давления воды, нагнетаемой в газожидкостный эжектор-смеситель 11, посредством частотно-регулируемого электропривода 8 силового насоса 7, в соответствии с технологической картой эксплуатации скважины.

При превышении давления в приемной камере газожидкостного эжектора-смесителя 11, чем в газопроводе 12 подачи газа от внешнего источника газа, срабатывает обратный клапан 14 на газопроводе 12, который блокирует попадание воды и/или ПАВ в газопровод 12, а при превышении давления в приемной камере газожидкостного эжектора-смесителя 11, чем в трубопроводе 15 подачи ПАВ из емкости, срабатывает обратный клапан 17 на трубопроводе 15, который блокирует попадание воды и/или газа в емкость с ПАВ.

Демонтаж внутрискважинного оборудования программно-управляемой нагнетательной скважины проводят в порядке, обратном монтажу.

Использование предлагаемой программно-регулируемой нагнетательной скважины с программно-регулируемым поддержанием вытеснения нефти из нефтеносных пластов к нефтедобывающим скважинам позволяет значительно повысить дебит нефтеносных пластов в соответствии с требованиями Правил охраны недр, утвержденных постановлением Госгортехнадзора РФ №71 от 06 июня 2003 г.

Похожие патенты RU2578078C2

название год авторы номер документа
НАГНЕТАТЕЛЬНАЯ СКВАЖИНА 2015
  • Николаев Олег Сергеевич
RU2574641C2
ВНУТРИСКВАЖИННОЕ УСТРОЙСТВО ОДНОВРЕМЕННО-РАЗДЕЛЬНОЙ ЗАКАЧКИ АГЕНТА 2016
  • Николаев Олег Сергеевич
RU2613398C2
УСТРОЙСТВО ОДНОВРЕМЕННО-РАЗДЕЛЬНОЙ ЗАКАЧКИ АГЕНТА В ПЛАСТЫ СКВАЖИНЫ (ВАРИАНТЫ) 2016
  • Николаев Олег Сергеевич
RU2626485C2
Нефтедобывающая установка 2018
  • Николаев Олег Сергеевич
RU2691039C1
КЛАПАННАЯ НАСОСНАЯ УСТАНОВКА ДЛЯ ОДНОВРЕМЕННО-РАЗДЕЛЬНОЙ ЭКСПЛУАТАЦИИ МНОГОПЛАСТОВОЙ СКВАЖИНЫ 2014
  • Николаев Олег Сергеевич
RU2563262C2
Глубиннонасосная нефтедобывающая установка (варианты) 2019
  • Николаев Олег Сергеевич
RU2702187C1
НЕФТЕДОБЫВАЮЩИЙ КОМПЛЕКС 2014
  • Николаев Олег Сергеевич
RU2571124C2
Способ эксплуатации многопластовой скважины и нефтедобывающая установка для его осуществления 2019
  • Николаев Олег Сергеевич
RU2728741C1
СПОСОБ ОДНОВРЕМЕННО-РАЗДЕЛЬНОЙ ЭКСПЛУАТАЦИИ ДВУХПЛАСТОВОЙ СКВАЖИНЫ И СКВАЖИННАЯ НАСОСНАЯ УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Николаев Олег Сергеевич
RU2562641C2
Установка одновременно-раздельной добычи нефти скважиной с боковым наклонно-направленным стволом 2019
  • Николаев Олег Сергеевич
RU2702180C1

Реферат патента 2016 года ПРОГРАММНО-УПРАВЛЯЕМАЯ НАГНЕТАТЕЛЬНАЯ СКВАЖИНА

Изобретение относится к добыче нефти и может быть применено для вытеснения нефти из нефтеносных пластов к добывающим скважинам. Программно-управляемая нагнетательная скважина содержит обсадную трубу, колонну насосно-компрессорных труб (НКТ), пакеры, устьевую запорно-перепускную арматуру, силовой насос с частотно-регулируемым электроприводом, газожидкостный эжектор-смеситель, емкость с поверхностно-активным веществом (ПАВ), дожимной насос и гидрозатвор, сообщающиеся трубопроводами, станцию управления, силовые кабеля, питающие насосы, и регулировочные клапаны, выполненные единым блоком телемеханической системы (ТМС) с возможностью программно-управляемого поддержания пластовых давлений с помощью управляющего контроллера с программным обеспечением и учета расхода рабочего агента посредством датчиков телеметрии и расходомера, размещенных в полостях гильз, параллельно расположенных в корпусе блока ТМС и связанных с контрольно-измерительными приборами на станции управления. Блок ТМС соединен с верхним стыковочным узлом пакера, состоящим из подвижных соединений гладких ниппелей и концевых штуцеров, последние установлены на прямоточной многоканальной муфте, образующие коаксиальные проточные каналы. К центральному каналу прямоточной многоканальной муфты присоединен трубчатый хвостовик, герметически установленный противоположным концом в центральном отверстии муфты, встроенной в колонну труб между пакерами и выполненной с радиальными проточными каналами, сообщающими коаксиальный проточный канал стыковочного узла с верхним пластом скважины, и центральный проточный канал - с нижним пластом через полости хвостовика и ствола нижнего пакера. Блок ТМС присоединен патрубком к колонне НКТ стыковочной муфтой, выполненной со сквозными пазами, и связан с устройством управления геофизическим кабелем, пропущенным через сквозной паз стыковочной муфты и лубрикатор. К колонне НКТ присоединен дополнительный пакер с кабельным вводом, образующий с пакером, расположенным выше верхнего пласта, нагнетательный коллектор, сообщающий колонну НКТ через сквозные пазы стыковочной муфты с полостью корпуса блока ТМС через окна в стенке корпуса. Геофизический кабель подсоединен к блоку ТМС кабельным разъемом, розетка которого закреплена в патрубке, а штырь в дне стыковочной муфты. Трубы, соединяющие пакеры выше пластов, герметически соединены подвижной разъединительной муфтой. В газопровод подвода газа и в трубопровод подачи ПАВ встроены регулируемые задвижки и обратные клапана. Технический результат заключается в повышении дебита нефтеносных пластов скважины. 4 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 578 078 C2

1. Программно-управляемая нагнетательная скважина, содержащая обсадную трубу, перфорированную на уровне нефтеносных пластов, в которой размещена колонна насосно-компрессорных труб и пакеры, установленные над нефтеносными пластами, устьевую запорно-перепускную арматуру, силовой насос с частотно-регулируемым электроприводом, газожидкостный эжектор-смеситель, емкость с поверхностно-активным веществом, дожимной насос и гидрозатвор, сообщающиеся трубопроводами, станцию управления, силовые кабеля, питающие насосы, и регулировочные клапаны, управляемые устройством управления, содержащим управляющий контроллер с программным обеспечением, устройство измерения пластовых параметров с датчиками телеметрии и расходомером, связанных геофизическим кабелем, отличающаяся тем, что регулировочные клапаны выполнены единым блоком телемеханической системы с возможностью программно-управляемого поддержания пластовых давлений с помощью управляющего контроллера с программным обеспечением и учета расхода рабочего агента, соединенным со стволом верхнего пакера посредством стыковочного узла, состоящего из подвижных соединений гладких ниппелей и концевых штуцеров, последние установлены на прямоточной многоканальной муфте, образующие коаксиальные проточные каналы, а датчики телеметрии и расходомер размещены в полостях гильз, параллельно расположенных в полости корпуса блока телемеханической системы и связанных с контрольно-измерительными приборами на станции управления, при этом к центральному каналу прямоточной многоканальной муфты присоединен трубчатый хвостовик, герметически установленный противоположным концом в центральном отверстии муфты, встроенной в колонну труб между вышеупомянутыми пакерами и выполненной с радиальными проточными каналами, сообщающими коаксиальный проточный канал стыковочного узла с верхним пластом скважины через межпакерное пространство, и центральный проточный канал - с нижним пластом через полости хвостовика и ствола нижнего пакера, при этом блок телемеханической системы присоединен патрубком к колонне насосно-компрессорных труб посредством стыковочной муфты, выполненной со сквозными пазами, и связан с устройством управления геофизическим кабелем, пропущенным через сквозной паз стыковочной муфты и лубрикатор, установленный на торце обсадной трубы, а к колонне насосно-компрессорных труб присоединен дополнительный пакер с кабельным вводом и нажимным якорным устройством, образующий с пакером, расположенным выше верхнего пласта, нагнетательный коллектор, сообщающий полость колонны насосно-компрессорных труб через сквозные пазы стыковочной муфты с полостью корпуса блока телемеханической системы через окна, выполненные в стенке корпуса.

2. Нагнетательная скважина по п.1, отличающаяся тем, что геофизический кабель подсоединен к блоку телемеханической системы посредством кабельного разъема, штырь которого закреплен в патрубке, а розетка на дне стыковочной муфты.

3. Нагнетательная скважина по п.1, отличающаяся тем, что трубы, соединяющие пакеры, расположенные выше нефтеносных пластов, герметически соединены подвижной разъединительной муфтой.

4. Нагнетательная скважина по п.1, отличающаяся тем, что в газопровод подвода газа от внешнего источника в приемную камеру газожидкостного эжектора-смесителя встроены регулируемая задвижка и обратный клапан.

5. Нагнетательная скважина по п.1, отличающаяся тем, что в трубопровод подачи поверхностно-активного вещества из емкости в приемную камеру газожидкостного эжектора-смесителя встроены регулируемая задвижка и обратный клапан.

Документы, цитированные в отчете о поиске Патент 2016 года RU2578078C2

СПОСОБ ВОЗДЕЙСТВИЯ НА ЗАСТОЙНУЮ ЗОНУ ИНТЕРВАЛОВ ПЛАСТОВ ГАРИПОВА И УСТАНОВКА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2012
  • Гарипов Олег Марсович
RU2529072C2
СПОСОБ ЗАПИСИ И ВОСПРОИЗВЕДЕНИЯ ШАХМАТНЫХ ПАРТИЙ И УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБАЗаявлено 1 июля 1347 года за № 3289/356801 в Мииистерство местнойпромышленяоста РСФСР Опубликовано 30 ноября 1951 года 0
SU92906A1
Деформометр для механических испытаний малых образцов 1960
  • Зуев А.П.
  • Галактионов С.С.
  • Гильгендорф Ю.Г.
  • Лебедев Л.М.
SU136082A1
Машина для очистки наружной поверхности действующего магистрального трубопровода 1961
  • Бужинский В.Л.
  • Овчинников И.С.
  • Ращепкин К.Е.
SU143281A1
RU 2014141711 A, 20.01.2015
US 2009211755 A1, 27.08.2009.

RU 2 578 078 C2

Авторы

Николаев Олег Сергеевич

Даты

2016-03-20Публикация

2015-02-24Подача