ТЕРМОЭЛЕКТРИЧЕСКИЙ КОЖУХ ДЛЯ ТРУБОПРОВОДА Российский патент 2016 года по МПК F24H1/00 

Описание патента на изобретение RU2578736C1

Предлагаемое изобретение относится к теплоэлектроэнергетике и может быть использовано для получения электрической энергии в процессе транспортирования в трубах различных теплоносителей (газов, жидкостей) путем непосредственной трансформации части их тепловой энергии в электрическую.

Известно термоэлектрическое звено (источник ЭДС), содержащее трубу теплоносителя, покрытую слоем диэлектрического материала с высокой теплопроводностью, выполненным из отдельных кольцевых зубчатых ребер с зубцами, плотно прижатых друг к другу, внутри каждого из которых помещены кольцевые зигзагообразные ряды термоэлектрических секций, состоящие из размещенных по очередности и соединенных между собой термоэмиссионных преобразователей, каждый из которых состоит из пары отрезков, выполненных из разных металлов М1 и М2, концы которых расплющены и плотно прижаты друг к другу и расположены в зонах нагрева и охлаждения, вблизи кромки зубца ребра и наружной поверхности трубы теплоносителя, соответственно, причем свободные концы зигзагообразных кольцевых рядов каждой термоэлектрической секции соединены между собой перемычками, а свободные концы кольцевых рядов крайних термоэлектрических секций, в свою очередь, соединены электропроводами с коллекторами и токовыводами [Патент РФ№2509266, МПК F24 Н1/00, F24 J3/00, 2014].

Основными недостатками известного устройства являются невозможность его монтажа на действующем трубопроводе и замены вышедших из строя термоэмиссионных преобразователей или термоэлектрических секций на действующем трубопроводе без разрушения покрытия из диэлектрического материала и смежных термоэлектрических секций и значительные потери вырабатываемого электричества из-за большого электрического сопротивления, соединенных последовательно термоэлектрических секций, что, в конечном счете, снижает его надежность и эффективность.

Более близким по технической сущности к предлагаемому изобретению является источник ЭДС в устройстве для термоэлектрической защиты трубопровода от коррозии, представляющий собой два полукольца (полукожуха), оребренных продольными ребрами и снабженных продольными фланцами с крепежными отверстиями, выполненными из гидростойкого диэлектрического с высокой теплопроводностью материала, покрывающих часть защищаемого трубопровода, причем внутри продольных ребер по всей их длине помещены зигзагообразные ряды теплоэлектрических секций, состоящие из размещенных по очередности и соединенных между собой термоэмиссионных преобразователей, состоящих из пары отрезков, выполненных из разных металлов М1 и М2, концы которых расплющены и плотно прижаты друг к другу и расположены в зоне нагрева и охлаждения, вблизи кромки продольных ребер и поверхности участка трубопровода параллельно их поверхности, при этом свободные концы теплоэлектрических секций каждого ребра с одной стороны соединены через токовыводы с одноименными зарядами с регулирующим блоком, с противоположной - через коллекторы, токовыводы с одноименными противоположными зарядами и кабель с анодным заземлителем [Заявка на изобретение №2013130437, МПК С23 F13/00, 2015].

Основными недостатками известного устройства являются невозможность замены вышедших из строя термоэмиссионных преобразователей или термоэлектрических секций на действующем трубопроводе, без разрушения покрытия из диэлектрического материала и смежных или термоэлектрических секций значительные потери вырабатываемого электричества из-за большого электрического сопротивления, соединенных последовательно термоэлектрических секций, что в конечном счете снижает его надежность и эффективность.

Техническим результатом предлагаемого изобретения является повышение надежности и эффективности термоэлектрического кожуха для трубопровода.

Технический результат достигается термоэлектрическим кожухом для трубопровода, содержащим два полуцилиндрических кожуха с продольными щелями, снабженные торцевыми кольцами, продольными фланцами с крепежными отверстиями, выполненными из гидростойкого материала, закрывающих участок трубопровода, с созданием между внутренней поверхностью полуцилиндров и наружной поверхностью трубопровода зазора шириной ∆, причем в продольные щели полуцилиндрических кожухов вставлены продольные ребра, выполненные из гидростойкого диэлектрического материала с высокой теплопроводностью, внутри которых по всей их длине помещены зигзагообразные ряды, состоящие, из размещенных по очередности и соединенных между собой термоэмиссионных преобразователей, состоящих из пары отрезков, выполненных из разных металлов М1 и М2, концы которых расплющены и плотно прижаты друг к другу и расположены вблизи кромки ребер, прижатых в зоне нагрева к поверхности трубопровода и в зоне охлаждения в окружающей среде (воде, грунте и т. д.), соответственно, свободные концы зигзагообразных рядов каждой пары ребер с одного торца в зоне охлаждения соединены перемычками, покрытыми слоем гидростойкого диэлектрического материала, а с противоположного торца свободные концы зигзагообразных рядов этих же пар в ребрах соединены между собой в зоне охлаждения через конденсаторы, покрытые слоем гидростойкого диэлектрического материала, образуя теплоэлектрические секции, причем конденсаторы каждого полуцилиндрического кожуха через перемычки последовательно соединены между собой, образуя теплоэлектрические блоки, а крайние конденсаторы каждого теплоэлектрического блока снабжены токовыводами с одноименными зарядами.

На фиг. 1 представлены общий вид и разрез термоэлектрического кожуха для трубопровода (ТЭКТ), на фиг. 2 - общий вид и разрез кожуха без термоэлектрических секций (ТЭС), на фиг. 3-5 - разрезы ТЭКТ, на фиг. 6,7 - узлы соединения ТЭС.

Предлагаемый термоэлектрический кожух для трубопровода содержит два полуцилиндрических кожуха 1 с продольными щелями 2, снабженные торцевыми кольцами 3, продольными фланцами 4 с крепежными отверстиями 5, выполненными из гидростойкого материала, закрывающих участок трубопровода 6, с созданием между внутренней поверхностью полуцилиндров 1 и наружной поверхностью трубопровода 6 зазора 7 шириной ∆, причем в продольные щели 2 полуцилиндрических кожухов 1 вставлены продольные ребра 8, выполненные из гидростойкого диэлектрического материала с высокой теплопроводностью, внутри которых по всей их длине помещены зигзагообразные ряды 9, состоящие из размещенных по очередности и соединенных между собой термоэмиссионных преобразователей (ТЭП) 10. Каждый ТЭП 10 состоит из пары отрезков, выполненных из разных металлов М1 и М2, концы которых расплющены и плотно прижаты друг к другу и расположены вблизи кромки ребер 8, прижатых в зоне нагрева к поверхности трубопровода 6 и в зоне охлаждения в окружающей среде (воде, грунте и т. д.), соответственно, свободные концы зигзагообразных рядов 9 каждой пары ребер 6 с одного торца в зоне охлаждения соединены перемычками 11, покрытыми слоем гидростойкого диэлектрического материала, а с противоположного торца свободные концы зигзагообразных рядов 9 этих же пар в ребрах 8 соединены между собой в зоне охлаждения через конденсаторы 12, покрытые слоем гидростойкого диэлектрического материала, образуя теплоэлектрические секции (ТЭС) 13, причем конденсаторы 12 каждого полуцилиндрического кожуха 1 через перемычки 14 последовательно соединены между собой, образуя теплоэлектрические блоки 15, а крайние конденсаторы 12 каждого теплоэлектрического блока 15 снабжены токовыводами с одноименными зарядами 16, 17.

Предлагаемый ТЭКТ (источник ЭДС), представленный на фиг. 1-7, работает следующим образом.

ТЭКТ устанавливается в процессе монтажа или реконструкции трубопровода 6, для чего два полуцилиндра 1 с продольными щелями 2, снабженные торцевыми кольцами 3, продольными фланцами 4 с крепежными отверстиями 5, накладываются на участок трубопровода 6 и крепятся к нему посредством стяжки через крепежные отверстия 5 таким образом, чтобы между внутренней поверхностью полуцилиндров 1 и наружной поверхностью трубопровода 6 оставался зазор шириной ∆ (ширина зазора ∆ выбирается из условия создания надежного контакта нижних кромок ребер 8 с наружной поверхностью трубопровода 6 и устойчивости ребер 8). После монтажа полуцилиндров 1 в продольные щели 2 вставляются продольные ребра 8 таким образом, чтобы их нижние кромки соприкасались с наружной поверхностью трубопровода 6, а их наружные торцы соединяют перемычками 11, 14 и конденсаторами 12, после чего токовыводы 16, 17 соединяют с регулирующим блоком и потребителем(на фиг.1-7 не показаны).

После заполнения трубопровода 6 и начала движения в нем потока газа (жидкости) с температурой tП, например, ниже, чем температура грунта (воды) tС, который соприкасается с поверхностью ребер 8, выполненных из гидростойкого диэлектрического с высокой теплопроводностью материала, в результате разности температур tП - tС происходит теплообмен между холодным газом (жидкостью), движущимся по трубе 4, и окружающим грунтом (водой), нагреваются и охлаждаются зоны нагрева и охлаждения продольных ребер 8, расположенные в зазоре между трубопроводом 6 и полуцилиндрическими кожухами 1, внутри которых помещены спаянные двухслойные расплющенные концы ТЭП 10, выполненные из металлов М1 и М2, расположенные параллельно поверхности трубы 1. Конструкция двухслойных концов ТЭП 10 позволяет увеличить количество переходящего тепла за счет повышенной площади их контакта с зонами нагрева и охлаждения и высокой площади контакта слоев самих металлов М1 и М2, соединенных между собой (например, спайкой), Кроме того, процесс теплообмена от материала ребер 8 к спаям металлов М1 и М2 ТЭП 17 интенсифицируется за счет передачи его теплопроводностью, скорость которой при высоком значении коэффициента теплопроводности значительно выше, чем скорость передачи тепла за счет конвекции [И. Н. Сушкин. Теплотехника. - М.: «Металлургия», 1973, с. 195-198]. В результате теплообменных процессов создается разность температур между спаянными двухслойными расплющенными, плотно прижатыми друг к другу, соединенными между собой концами ТЭП 10, выполненными из металлов М1и М2, расположенными в кромках ребер 8 и противоположными им спаянными концами этих же отрезков металлов М1 и М2, расположенных в зигзагообразных рядах 9. Создаваемая разность температур между зонами нагрева и охлаждения вызывает эмиссию электронов во всех ТЭП 10 и, соответственно, возникновение в зигзагообразных рядах ТЭС 9 термоэлектричества [С.Г. Калашников. Электричество. - М: «Наука», 1970, с. 502-506]. Полученное термоэлектричество каждой пары зигзагообразных рядов 9, соединенных попарно между собой перемычками 11, образующих ТЭС 13, направляется в конденсаторы 12, соединенные с холодными свободными концами двух конечных ТЭП 10 каждой ТЭС 13, которые аккумулируют его. При этом каждый конденсатор 12 обслуживает свою ТЭС 13, а так как конденсаторы каждого ТЭБ 15 соединены между собой последовательно через перемычки 14, то термоэлектричество предыдущих ТЭС 13 не проходит через последующие ТЭС 13, а движется только через последовательно соединенные конденсаторы 12, что существенно снижает потери мощности на преодоление сопротивлений электричеству при прохождении по многочисленным ТЭП 10. Эффективная работа конденсаторов 12 обеспечивается также тем, что они постоянно охлаждаются в зоне охлаждения водой или грунтом. Полученное электричество каждого блока 15 через токовыводы 16,17, поступает в блок регулирования, где создается требуемое напряжение и сила тока и подается потребителю (на фиг. 1-11 не показаны).

Величина разности электрического потенциала и силы тока на токовыводах 16, 17 зависит от разности температур на спаях металлов М1 и М2, их характеристик, количества ТЭП 10 в ТЭС 13 и их числа. При необходимости устанавливают несколько ТЭКТ. Требуемые напряжение U и силу тока I в зависимости от расхода газа (жидкости) и величины разности температур (tП- tС) регулируют в блоке регулирования. Полученное электричество можно использовать, например, для электрохимической защиты трубопровода или электропривода задвижек.

Таким образом, конструкция предлагаемого ТЭКТ (источника ЭДС) обеспечивает возможность замены вышедших из строя термоэмиссионных преобразователей или термоэлектрических секций на действующем трубопроводе, без разрушения покрытия из диэлектрического материала и смежных термоэлектрических секций и снизить электрическое сопротивление установки, что повышает ее надежность и эффективность.

Похожие патенты RU2578736C1

название год авторы номер документа
Термоэлектрическое оребрение для трубопровода 2017
  • Ежов Владимир Сергеевич
  • Семичева Наталья Евгеньевна
  • Бурцев Алексей Петрович
  • Бурцев Александр Петрович
  • Березин Сергей Владимирович
  • Березин Дмитрий Станиславович
RU2659508C1
Автономный циркуляционный термоэлектронасос для системы отопления 2015
  • Ежов Владимир Сергеевич
  • Дрожжин Роман Сергеевич
  • Брежнев Артем Викторович
RU2614349C1
Автономный термоэлектрогенератор на трубопроводе 2018
  • Ежов Владимир Сергеевич
  • Семичева Наталья Евгеньевна
  • Иванов Николай Иванович
  • Бурцев Алексей Петрович
  • Брежнев Артем Викторович
RU2676551C1
Автономный кожухотрубчатый термоэлектрогенератор 2019
  • Ежов Владимир Сергеевич
  • Семичева Наталья Евгеньевна
  • Бурцев Алексей Петрович
  • Перепелица Никита Сергеевич
RU2715268C1
УСТРОЙСТВО ДЛЯ ТЕРМОЭЛЕКТРИЧЕСКОЙ ЗАЩИТЫ ТРУБОПРОВОДА ОТ КОРРОЗИИ 2013
  • Ежов Владимир Сергеевич
  • Емельянов Сергей Геннадьевич
  • Семичева Наталья Евгеньевна
  • Березин Сергей Владимирович
  • Панин Александр Анреевич
  • Бурцев Алексей Петрович
  • Сошникова Анастасия Ивановна
  • Цуканова Дарья Викторовна
RU2550073C2
УСТРОЙСТВО ТЕРМОЭЛЕКТРИЧЕСКОЙ ЗАЩИТЫ ТРУБОПРОВОДА ОТ КОРРОЗИИ 2012
  • Ежов Владимир Сергеевич
  • Березин Сергей Владимирович
RU2510434C2
ТЕРМОЭЛЕКТРИЧЕСКОЕ ЗВЕНО ДЛЯ ТРУБЫ 2012
  • Ежов Владимир Сергеевич
RU2509266C1
Термоэлектрогенератор теплового пункта 2024
  • Ежов Владимир Сергеевич
  • Семичева Наталья Евгеньевна
  • Брежнев Артем Викторович
RU2826849C1
ТЕПЛОЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР 2011
  • Ежов Владимир Сергеевич
  • Семичева Наталья Евгеньевна
  • Журавлев Александр Юрьевич
  • Якушев Александр Юрьевич
  • Березин Сергей Владимирович
RU2490563C2
Термоэлектрический источник электроснабжения для автономного теплогенератора 2019
  • Ежов Владимир Сергеевич
  • Бурцев Алексей Петрович
  • Перепелица Никита Сергеевич
RU2725303C1

Иллюстрации к изобретению RU 2 578 736 C1

Реферат патента 2016 года ТЕРМОЭЛЕКТРИЧЕСКИЙ КОЖУХ ДЛЯ ТРУБОПРОВОДА

Изобретение относится к теплоэлектроэнергетике и может быть использовано для получения электрической энергии в процессе транспортирования в трубах различных теплоносителей (газов, жидкостей) путем непосредственной трансформации части их тепловой энергии в электрическую. Техническим результатом предлагаемого изобретения является повышение надежности и эффективности термоэлектрического кожуха для трубопровода. Технический результат достигается термоэлектрическим кожухом для трубопровода, содержащим два полуцилиндрических кожуха с продольными щелями, снабженные торцевыми кольцами, продольными фланцами с крепежными отверстиями, выполненными из гидростойкого материала, закрывающих участок трубопровода, с созданием между внутренней поверхностью полуцилиндров и наружной поверхностью трубопровода зазора шириной ∆, причем в продольные щели полуцилиндрических кожухов вставлены продольные ребра, выполненные из гидростойкого диэлектрического материала с высокой теплопроводностью, внутри которых по всей их длине помещены зигзагообразные ряды, состоящие, из соединенных между собой термоэмиссионных преобразователей. 7 ил.

Формула изобретения RU 2 578 736 C1

Термоэлектрический кожух для трубопровода, содержащий два полукожуха с продольными ребрами, снабженные продольными фланцами с крепежными отверстиями, выполненными из гидростойкого диэлектрического с высокой теплопроводностью материала, покрывающих часть трубопровода, внутри продольных ребер по всей их длине помещены зигзагообразные ряды, образующие теплоэлектрические секции, состоящие из размещенных по очередности и соединенных между собой термоэмиссионных преобразователей, выполненных из пары отрезков разных металлов М1 и М2, концы которых расплющены и плотно прижаты друг к другу и расположены в зоне нагрева и охлаждения, вблизи кромки продольных ребер и поверхности участка трубопровода параллельно их поверхности, свободные концы теплоэлектрических секций каждого ребра снабжены токовыводами с одноименными зарядами, отличающийся тем, что полуцилиндрические кожухи выполнены с продольными щелями и торцевыми кольцами, обеспечивающими зазор между внутренней поверхностью полуцилиндрических кожухов и наружной поверхностью трубопровода шириной ∆, в продольные щели полуцилиндрических кожухов вставлены продольные ребра, внутри которых помещены зигзагообразные ряды, состоящие из термоэмиссионных преобразователей, свободные концы зигзагообразных рядов каждой пары ребер с одного торца в зоне охлаждения соединены перемычками, покрытыми слоем гидростойкого диэлектрического материала, а с противоположного торца свободные концы зигзагообразных рядов этих же пар соединены между собой тоже в зоне охлаждения через конденсаторы, покрытые слоем гидростойкого диэлектрического материала, образуя теплоэлектрические секции, причем конденсаторы каждого полуцилиндрического кожуха через перемычки последовательно соединены между собой, образуя теплоэлектрические блоки, а токовыводы присоединены к крайним конденсаторам каждого теплоэлектрического блока.

Документы, цитированные в отчете о поиске Патент 2016 года RU2578736C1

ТЕРМОЭЛЕКТРИЧЕСКОЕ ЗВЕНО ДЛЯ ТРУБЫ 2012
  • Ежов Владимир Сергеевич
RU2509266C1
ТЕПЛОЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР 2011
  • Ежов Владимир Сергеевич
  • Семичева Наталья Евгеньевна
  • Журавлев Александр Юрьевич
  • Якушев Александр Юрьевич
  • Березин Сергей Владимирович
RU2490563C2
ТЕПЛОЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР ДЛЯ ИНДИВИДУАЛЬНОГО ЭНЕРГОСНАБЖЕНИЯ 2013
  • Ежов Владимир Сергеевич
  • Семичева Наталья Евгеньевна
  • Пивоваров Антон Сергеевич
  • Косинов Андрей Владимирович
  • Лысенко Иван Викторович
RU2541799C1
УСТРОЙСТВО ТЕРМОЭЛЕКТРИЧЕСКОЙ ЗАЩИТЫ ТРУБОПРОВОДА ОТ КОРРОЗИИ 2012
  • Ежов Владимир Сергеевич
  • Березин Сергей Владимирович
RU2510434C2
US 20050236028 A1, 27.10.2005.

RU 2 578 736 C1

Авторы

Ежов Владимир Сергеевич

Семичева Наталья Евгеньевна

Березин Сергей Владимирович

Бурцев Алексей Петрович

Шилин Александр Сергеевич

Якшин Александр Вадимович

Цуканова Дарья Дмитриевна

Сошникова Анастасия Ивановна

Даты

2016-03-27Публикация

2015-04-07Подача