СПОСОБ ЗАПУСКА ДВИГАТЕЛЯ И СИСТЕМА ДВИГАТЕЛЯ Российский патент 2016 года по МПК F02D21/08 F02D43/00 

Описание патента на изобретение RU2579616C9

Область техники, к которой относится изобретение

Изобретение относится к системам запуска дизельных двигателей транспортных средств.

Уровень техники

Дизельные двигатели могут обеспечить более высокий крутящий момент и большую экономию топлива по сравнению с бензиновыми двигателями. Однако температура выхлопных газов дизельных двигателей ниже, чем у многих бензиновых двигателей. В связи с этим каталитические нейтрализаторы выхлопной системы дизельного двигателя будут дольше разогреваться до температуры, при которой достигается пороговая температура эффективной работы каталитических нейтрализаторов (например, температура запуска каталитических нейтрализаторов). Более того, для повышения выходной мощности многие дизельные двигатели оснащены системой турбонаддува, и тепло от выхлопных газов поглощается турбокомпрессором. Следовательно, еще меньше тепла может быть доступно для запуска каталитического нейтрализатора. Ввиду проблем, связанных с сохранением тепла выхлопных газов в дизельном двигателе, может быть целесообразно каким-либо образом усовершенствовать систему запуска дизельного двигателя.

Раскрытие изобретения

Для решения вышеупомянутых проблем был разработан способ эксплуатации двигателя, который включает в себя эксплуатацию двигателя на холостом ходу с первой процентной концентрацией рециркулированных выхлопных газов (EGR) при температуре двигателя, меньшей, чем первая температура двигателя; и эксплуатацию двигателя на холостом ходу со второй процентной концентрацией рециркулированных выхлопных газов при температуре двигателя, большей, чем первая температура двигателя, при этом вторая процентная концентрация EGR меньше первой процентной концентрации EGR.

При эксплуатации двигателя после холодного запуска с уровнем рециркуляции выхлопных газов (EGR), который выше, чем при горячем запуске в тех же условиях, становится возможным увеличить температуры выхлопных газов двигателя для снижения времени запуска каталитического нейтрализатора. Более того, увеличение EGR и задержка фазы сгорания (например, расположение максимального давления в цилиндре) могут увеличить температуру двигателя за более короткий промежуток времени. Следовательно, выбросы двигателя могут быть уменьшены. В одном из примеров скорость и нагрузка двигателя могут быть увеличены за счет гибридной силовой цепи, позволяющей повысить уровень EGR на холостом ходу двигателя. Более высокие уровни EGR на холостом ходу могут задержать этап сгорания таким образом, чтобы направить больше тепла к двигателю и выхлопной системе двигателя. Один из способов достижения более высокой нагрузки двигателя и увеличения допуска на более высокое процентное содержание рециркулированных выхлопных газов в смесях цилиндра заключается в использовании дополнительного двигателя гибридного транспортного средства. Например, можно использовать электрический двигатель для управления скоростью и нагрузкой двигателя во время работы на холостом ходу.

Представленный способ может обеспечить несколько преимуществ. В частности, становится возможным уменьшить время запуска каталитического нейтрализатора, таким образом уменьшая выбросы двигателя. Кроме того, способ уменьшает время прогревания двигателя, таким образом, снижая выбросы подаваемого газа двигателя. Более того, можно обеспечить хорошие дорожные качества автомобиля за счет линейного изменения количества рециркулированных выхлопных газов и задержки фазы сгорания в условиях запроса увеличения крутящего момента двигателя.

Описанные выше и другие преимущества, а также характеристики настоящего изобретения станут более понятны из детального описания, которое можно использовать как отдельно, так и вместе с чертежами.

Следует понимать, что вышеизложенная сущность изобретения предназначена для ознакомления в упрощенной форме с принципами, которые будут далее представлены в детальном описании. Это не означает, что можно определить ключевые или основные характеристики из представленной сущности изобретения, содержание которой определено формулой изобретения, представленной после детального описания. Более того, заявленный предмет изобретения не ограничивается устранением недостатков, указанных выше или в какой-либо части данного документа.

Краткое описание чертежей

Фиг.1 представляет собой схематическое изображение двигателя;

Фиг.2 представляет собой пример гибридной силовой передачи, включающей в себя двигатель, представленный на Фиг.1;

Фиг.3-4 представляют собой основные сигналы, передающиеся во время двух разных последовательностей запуска двигателя;

Фиг.5 представляет собой блок-схему иллюстративного способа запуска двигателя.

Осуществление изобретения

Изобретение относится к усовершенствованию запуска двигателя, представленного на Фиг.1, на которой изображен один из примеров дизельного двигателя с наддувом. Техническим результатом способа, проиллюстрированного на Фиг.5, является усовершенствование запуска двигателя и снижение выбросов двигателя путем регулирования рециркуляции выхлопных газов, давления во всасывающем коллекторе, работы запальной свечи и фазы горения. На Фиг.2 представлен пример силовой передачи, включающей в себя двигатель, изображенный на Фиг.1. На Фиг.3 и 4 показаны основные сигналы во время двух разных последовательностей запуска двигателя. На Фиг.5 представлена блок-схема иллюстративного способа запуска двигателя.

На Фиг.1 схематически показан двигатель внутреннего сгорания 10, содержащий несколько цилиндров, только один из которых показан на Фиг.1, управляемый при помощи электронного контроллера 12 двигателя. Двигатель 10 включает в себя камеру сгорания 30 и стенки 32 цилиндра с поршнем 36, размещенным в них и соединенным с коленчатым валом 40. Камера сгорания 30 показана сообщающейся с впускным коллектором 44 и выпускным коллектором 48 через соответствующие впускной клапан 52 и выпускной клапан 54. Каждый впускной и выпускной клапан может приводиться в действие впускным кулачком 51 и выпускным кулачком 53. В другом случае один или больше впускных и выпускных клапанов могут приводиться в действие электромеханической обмоткой клапана и якорем в сборе. Положение впускного кулачка 51 может определяться датчиком 55 впускного кулачка. Положение выпускного кулачка 53 может определяться датчиком 57 выпускного кулачка.

Топливный инжектор 66 показан расположенным таким образом, чтобы впрыскивать топливо непосредственно в камеру сгорания 30, что известно специалистам в данной области как «прямой впрыск». Топливный инжектор 66 поставляет топливо пропорционально ширине импульса сигнала FPW от контроллера 12. Топливо подается к топливному инжектору 66 топливной системой (не показана), содержащей топливный бак, топливный насос и топливное реле (не показано). Давление топлива, поставляемого топливной системой, можно регулировать за счет изменения положения клапана, регулирующего поток топлива к топливному насосу (не показан). Кроме того, дозирующий клапан находится внутри или рядом с направляющей-распределителем для топлива для полного контроля расхода топлива.

Кроме того, впускной коллектор 44 показан сообщающимся с необязательным электронным дросселем 62, который регулирует положение дроссельной заслонки 64 для контроля воздушного потока из впускной нагнетающей камеры 46. Компрессор 162 втягивает воздух из воздухозаборника 42 для подачи в нагнетающую камеру 46. Выхлопные газы раскручивают турбину 164, которая соединена с компрессором 162 через вал 161. В некоторых случаях может быть установлен охладитель наддувочного воздуха. Скорость компрессора можно отрегулировать за счет настройки положения изменяемого регулятора 72 с поворотными лопатками или перепускного клапана 158 компрессора. В других случаях регулятор 72 с поворотными лопатками может быть заменен на перепускную заслонку 74. Регулятор 72 с поворотными лопатками настраивает положение лопаток турбины с изменяемой геометрией. Выхлопные газы могут проходить через турбину 164, обеспечивая небольшое количество энергии для вращения турбины 164, когда лопатки находятся в открытом положении. Выхлопные газы могут проходить через турбину 164 и передавать увеличенное усилие турбине 164, когда лопатки находятся в закрытом положении. В качестве альтернативы перепускная заслонка 74 позволяет выхлопным газам обходить турбину 164, таким образом уменьшая количество энергии, поступающей к турбине. Перепускной клапан 158 компрессора позволяет сжатому воздуху на выходе компрессора 162 вернуться на вход компрессора 162. В этом случае, эффективность компрессора 162 может быть снижена для изменения потока, проходящего через компрессор 162, и уменьшения давления во впускном коллекторе.

Сгорание инициируется в камере сгорания 30, когда топливо автоматически зажигается при достижении поршнем 36 верхней мертвой точки рабочего хода. В некоторых примерах универсальный датчик 126 общего содержания кислорода в выхлопных газах (Universal Exhaust Gas Oxygen, UEGO) может быть соединен с выпускным коллектором 48 выше по потоку устройства 70 снижения токсичности выбросов. В других случаях, датчик UEGO может быть расположен ниже по потоку одного или нескольких устройств снижения токсичности выхлопа. В другом случае датчик 126 UEGO может быть заменен на датчик NOx (датчик окислов азота).

При более низких температурах двигателя запальная свеча 68 может преобразовать электрическую энергию в тепловую таким образом, чтобы повысить температуру в камере сгорания 30. Повышение температуры сгорания в камере сгорания 30 может облегчить воспламенение воздушно-топливной смеси в цилиндре за счет сжатия.

Устройство 70 снижения токсичности выбросов в одном случае может включать в себя сажевый фильтр и каталитические блоки. В другом случае могут использоваться многочисленные устройства снижения токсичности выбросов, каждое из которых имеет несколько блоков. В одном случае устройство 70 снижения токсичности выбросов может включать в себя катализатор окисления. В других случаях устройство контроля выбросов может включать в себя ловушку обедненного NOx или систему SCR (селективного каталитического восстановления).

Двигатель обеспечивается рециркулированными выхлопными газами через клапан 80 EGR. Клапан 80 EGR является трехходовым, который перекрывает или пропускает выхлопные газы от располагающегося ниже по потоку устройства 70 снижения токсичности выбросов к месту в воздухозаборной системе двигателя выше по потоку компрессора 162. В альтернативных примерах рециркулированные выхлопные газы могут поступать из места выше по потоку турбины 164 к впускному коллектору 44. Рециркулированные выхлопные газы могут обходить охладитель 85 EGR или, в альтернативном случае, рециркулированные выхлопные газы могут быть охлаждены за счет пропускания через охладитель 85 EGR. В других случаях могут быть предусмотрены системы рециркуляции выхлопных газов высокого и низкого давления.

Контроллер 12 показан на Фиг.1 как традиционный микрокомпьютер, содержащий: микропроцессор 102 (CPU), порты 104 ввода и вывода, постоянное запоминающее устройство 106 (ROM), оперативную память 108 (RAM), оперативную энергонезависимую память 110 (КАМ) и обычную шину данных. Контроллер 12 показан получающим различные сигналы от датчиков, соединенных с двигателем 10. Помимо описанных выше сигналов, контроллер также получает данные: о температуре охлаждающей жидкости двигателя (ЕСТ) от датчика 112 температуры, соединенного с каналом 114 охлаждения; датчика положения 134, соединенного с педалью газа 130, для измерения силы нажатия ногой 132; измерений давления в коллекторе двигателя (MAP) от датчика давления 121, соединенного с впускным коллектором 44; о давлении наддува от датчика 122 давления, о концентрации кислорода в выхлопных газах от кислородного датчика 126; о фазе двигателя с датчика 118 на эффекте Холла, считывающего положение коленчатого вала 40; показаний датчика 120 воздушной массы, поступающей в двигатель (например, теплового измерителя воздушного потока); и показаний положения дросселя датчика 58. Также для контроллера 12 может быть измерено барометрическое давление (датчик не показан). Согласно предпочтительному варианту воплощения изобретения, датчик 118 на эффекте Холла производит заранее установленное количество равномерных импульсов в каждый цикл коленчатого вала, на основании которых может быть определена скорость вращения двигателя (RPM).

В некоторых примерах в автомобиле с гибридным приводом двигатель может быть соединен с электродвигателем/системой аккумулятора, как показано на Фиг.2. Автомобиль с гибридным приводом может иметь параллельную и последовательную конфигурации, а также их комбинации и вариации.

Во время работы каждый цилиндр в двигателе 10 обычно проходит 4 рабочих цикла: впуск, сжатие, рабочий ход и выпуск. Во время впуска обычно выпускной клапан 54 закрывается, а впускной клапан 52 открывается. Воздух поступает в камеру сгорания 30 через впускной коллектор 44, а поршень 36 двигается по направлению к дну цилиндра так, чтобы увеличить объем внутри камеры сгорания 30. Положение, в котором поршень 36 находится рядом с дном цилиндра и в конце своего хода (т.е. когда камера сгорания 30 имеет наибольший объем), обычно называется специалистами в данной области нижней мертвой точкой (НМТ). Во время хода сжатия впускной клапан 52 и выпускной клапан 54 закрыты. Поршень 36 двигается по направлению к головке цилиндров, чтобы сжать воздух внутри камеры сгорания 30. Точка, в которой поршень 36 находится в конце своего хода и наиболее близко к головке цилиндров (т.е. когда камера сгорания имеет наименьший объем), обычно называется специалистами в данной области верхней мертвой точкой (ВМТ). В процессе, здесь и далее обозначаемом «впрыскивание», топливо поступает в камеру сгорания. В процессе, здесь и далее обозначаемом «зажигание», впрыснутое топливо воспламеняют с помощью известных способов зажигания, таких как свеча 92 зажигания, что приводит к сгоранию. Во время рабочего хода расширяющиеся газы толкают поршень 36 обратно к НМТ. Коленчатый вал 40 превращает движение поршня в крутящий момент вращающегося вала. Наконец, во время хода выпуска, выпускной клапан 54 открывается, чтобы выпустить воспламененную смесь воздуха и топлива в выпускной коллектор 48, а поршень возвращается к ВМТ. Можно отметить, что вышеизложенное приведено только в качестве примера, и распределение по времени открывания и/или закрывания впускного и выпускного клапанов может меняться так, чтобы обеспечить положительное или отрицательное перекрытие клапанов, позднее закрывание впускного клапана или различные другие варианты. Кроме того, в некоторых случаях может использоваться двухтактный цикл.

На Фиг.2 представлен пример гибридной силовой передачи (трансмиссии), включающей в себя двигатель, показанный на Фиг.1. Гибридная силовая передача 200 включает в себя двигатель 10 и контроллер 12 двигателя, представленные на Фиг.1. Гибридная силовая передача 200 также включает в себя электромотор 202 и контроллер 210 электромотора. Контроллер 12 двигателя может сообщаться с контроллером 210 электромотора через линию связи 250. В одном случае линия связи 250 является каналом CAN-соединения. Электромотор 202 показан механически соединенным с двигателем 10 через трансмиссию 204. Приводной вал 230 механически соединяет электромотор с колесами 222 транспортного средства. Электромотор 202 и двигатель 10 могут обеспечивать вращение колес 222 как по отдельности, так и вместе. Колеса 222 транспортного средства могут быть как передними, так и задними колесами транспортного средства. В других случаях двигатель и электромотор могут быть соединены любым другим способом.

Таким образом, системы, показанные на Фиг.1 и 2, описывают систему двигателя, содержащую: двигатель, клапан EGR, пневматически соединенный с двигателем; запальную свечу, соединенную с двигателем; контроллер, содержащий инструкции для обеспечения работы двигателя на холостом ходу с клапаном EGR в первом положении, когда двигатель работает при первой температуре, инструкции для обеспечения работы двигателя на холостом ходу с клапаном EGR во втором положении, когда температура двигателя больше первой температуры двигателя, причем второе положение клапана EGR характеризуется меньшей степенью открывания, чем первое положение клапана EGR; а также инструкции для обеспечения нагревания камеры сгорания двигателя после запуска с помощью запальной свечи, когда температура двигателя меньше первой температуры двигателя. Следует отметить, что условия холостого хода могут изменяться в зависимости от температуры двигателя. Например, когда двигатель работает при более низких температурах, скорость холостого хода может быть больше на 200 оборотов в минуту, чем при работе двигателя на теплом холостом ходу. Кроме того, нагрузка двигателя может быть увеличена на холостом ходу, когда двигатель работает при более низкой температуре. Условия работы двигателя на холостом ходу могут включать в себя ситуацию, когда фактически отсутствуют запросы водителя и когда транспортное средство, управляемое двигателем, стоит на месте. В одном примере двигатель выдает, в основном, одинаковый механический крутящий момент во время теплого и холодного холостого хода, но в холодных условиях двигатель работает при большей скорости и нагрузке. В холодных условиях дополнительная энергия от сгорания преобразуется в тепло выхлопных газов, а не в механическую энергию. Также система двигателей включает в себя дополнительные инструкции контроллера на снижение температуры наконечника запальной свечи при снижении первой процентной концентрации рециркулированных выхлопных газов. Также система двигателя включает в себя дополнительные инструкции контроллера на открывание перепускного клапана компрессора, когда температура двигателя меньше первой температуры двигателя. Система двигателя включает в себя дополнительные инструкции контроллера на открывание перепускного клапана компрессора в ответ на давление впускного коллектора. Система двигателя включает в себя дополнительные инструкции контроллера на открывание перепускной заслонки или регулирование положения лопаток турбины в ответ на давление впускного коллектора. Система двигателя включает в себя дополнительные инструкции контроллера на задержку впрыскивания топлива, когда температура двигателя меньше первой температуры двигателя.

На Фиг.3 показаны основные сигналы во время первой последовательности запуска двигателя. Показанные сигналы могут быть получены за счет выполнения инструкций способа, представленного на Фиг.5, контроллером 12, показанным на Фиг.1.

На первом сверху графике Фиг.3 показана частота вращения (скорость) двигателя. Частоту вращения двигателя определяют с помощью датчика коленчатого вала или другим известным способом. По оси X отложено время, которое увеличивается слева направо. По оси Y отложена скорость двигателя, которая увеличивается по направлению стрелки оси Y.

На втором сверху графике Фиг.3 показано давление впускного коллектора двигателя (MAP). По оси X отложено время, которое увеличивается слева направо. Давление всасывающего коллектора определяют с помощью датчика давления, давление впускного коллектора увеличивается по направлению стрелки оси Y.

На третьем сверху графике Фиг.3 представлено количество рециркулированных выхлопных газов двигателя в процентном отношении к заряду цилиндра. Количество рециркулированных выхлопных газов двигателя регулируется с помощью изменения положения клапана EGR. По оси X отложено время, которое увеличивается слева направо. По оси Y отложено количество рециркулированных выхлопных газов двигателя в процентном отношении к заряду цилиндра, которое увеличивается по направлению стрелки оси Y.

На четвертом сверху графике Фиг.3 показана фаза сгорания двигателя (например, расположение максимального давления цилиндра). Фаза сгорания регулируется путем изменения задержки впрыскивания топлива, количества рециркулированных выхлопных газов, величины наддува и температуры воздушно-топливной смеси. По оси X отложено время, которое увеличивается слева направо. По оси Y отложена фаза сгорания двигателя, длительность которой увеличивается по направлению стрелки оси Y.

На пятом сверху графике Фиг.3 показано положение перепускной заслонки турбокомпрессора. Перепускная заслонка позволяет выхлопным газам обходить турбокомпрессор, когда клапан открыт. По оси X отложено время, которое увеличивается слева направо. По оси Y отложено положение перепускной заслонки, заслонка открывается больше по направлению стрелки оси Y.

На шестом сверху графике Фиг.3 показано положение перепускного клапана (CBV) турбокомпрессора. Перепускной клапан позволяет направлять сжатый воздух от выхода компрессора (например, 162 на Фиг.1) ко входу в компрессор, когда клапан открыт. По оси X отложено время, которое увеличивается слева направо. По оси Y отложено положение перепускного клапана, клапан открывается больше по направлению стрелки оси Y.

На седьмом сверху графике Фиг.3 показана энергия, подаваемая на запальную свечу, температура наконечника запальной свечи повышается при увеличении количества энергии, поступающей к запальной свече. По оси X отложено время, которое увеличивается слева направо. По оси Y отложена электрическая энергия, поступающая к запальной свече, ее значение увеличивается по направлению стрелки оси Y.

На восьмом сверху графике Фиг.3 показана температура каталитического нейтрализатора. По оси X отложено время, которое увеличивается слева направо. По оси Y отложена температура каталитического нейтрализатора, которая увеличивается по направлению стрелки оси Y. Горизонтальная линия 202 показывает температуру запуска каталитического нейтрализатора.

В момент времени Т0 частота вращения двигателя равна 0. Соответственно, MAP равно атмосферному давлению, количество рециркулированных выхлопных газов равно 0, задержка фазы сгорания равна 0, перепускная заслонка закрыта, перепускной клапан компрессора закрыт, температура каталитического нейтрализатора низкая. Запальная свеча активирована для подготовки запуска двигателя.

Между моментом времени Т0 и T1 двигатель запускается, начиная работу на холостом ходу в момент времени T1. В некоторых случаях положение перепускной заслонки турбокомпрессора или лопаток турбины может регулироваться во время запуска, что показано пунктирной линией на пятом сверху графике Фиг.3. Также в некоторых случаях может быть отрегулировано положение перепускного клапана компрессора между моментами времени Т0 и T1.

Между метками времени T1 и Т2 двигатель работает на холостом ходу, MAP уменьшается, т.к. давление впускного коллектора увеличивается. MAP может уменьшаться так, как показано, когда впускная дроссельная заслонка закрыта, по крайней мере частично. В других случаях значение MAP может быть уменьшено после того, как частота вращения двигателя достигнет значения для холостого хода, за счет закрывания впускной дроссельной заслонки. Энергия запальной свечи уменьшается между отметками времени Т1 и Т2. Энергия запальной свечи может быть уменьшена в ответ на частоту вращения двигателя или MAP. Так как частота вращения двигателя и MAP могут служить индикаторами запуска двигателя, количество энергии, поступающей к запальной свече, может быть уменьшено при достижении частоты вращения, соответствующей холостому ходу. Фаза сгорания также изменяется в сторону более раннего зажигания, указывая на процесс горения в цилиндрах двигателя. Количество рециркулированных выхлопных газов низкое, потому что из двигателя вышло небольшое количество выхлопных газов. В некоторых случаях клапан EGR может быть закрыт во время запуска двигателя и до набора двигателем частоты вращения холостого хода для снижения возможности пропуска зажигания.

В момент времени Т2 двигатель достигает частоты вращения холостого хода и предпринимаются дополнительные действия по увеличению температуры выхлопных газов двигателя. В частности, открывается клапан EGR, фаза сгорания задерживается за счет задержки впрыскивания в соответствии с положением коленчатого вала двигателя и разбавленной воздушно-топливной смеси. Далее, перепускная заслонка турбокомпрессора открывается, так же, как и перепускной клапан компрессора. Открывание перепускной заслонки уменьшает количество энергии выхлопных газов, передаваемое турбине турбокомпрессора. В связи с этим, дополнительное тепло от выхлопных газов доступно для каталитического нейтрализатора на выходе из двигателя. Кроме того, из-за подачи меньшей энергии выхлопных газов в турбину, компрессор имеет склонность сжимать меньше воздуха, и, таким образом, давление впускного коллектора может быть уменьшено. В системах, в которых лопатки турбокомпрессора имеют изменяемую геометрию, лопатки устанавливаются в такое положение, чтобы к турбине подавалась меньшая энергия выхлопных газов. В одном из случаев лопатки могут находиться в минимальном положении. Перепускной клапан компрессора также открыт между моментами времени T1 и Т2. Открыванием перепускного клапана компрессора любое давление воздуха, которое может образовываться за счет вращения компрессора, может быть перенаправлено назад к входу компрессора таким образом, чтобы перепад давления на дросселе, расположенном выше по потоку компрессора, может быть уменьшен, тем самым уменьшая воздушный поток в двигатель и MAP. Энергия, поступающая к запальной свече, остается, по существу, постоянной до тех пор, пока количество рециркулированных выхлопных газов двигателя увеличивается. В одном примере количество энергии, поступающей к запальной свече, зависит от количества рециркулированных выхлопных газов двигателя или процентного соотношения заряда цилиндра. Температура каталитического нейтрализатора низкая, но она увеличивается за счет сгорания.

Между моментами времени Т2 и Т3 скорость двигателя, по существу, остается постоянной так же, как и рост температуры каталитического нейтрализатора и двигателя. При разгоне двигателя MAP уменьшается и остается низким для задержки фазы сгорания. Количество рециркулированных выхлопных газов увеличивается после разгона двигателя, а затем выравнивается перед тем, как в итоге уменьшиться при достижении времени Т3. Количество рециркулированных выхлопных газов на холостом ходу при холодном каталитическом нейтрализаторе составляет более высокое процентное содержание в заряде цилиндра, по сравнению с количеством рециркулированных выхлопных газов, когда двигатель работает на холостом ходу, а каталитический нейтрализатор достиг температуры включения. В одном примере можно увеличить количество рециркулированных выхлопных газов за счет нагрузки двигателя через электромотор на холостом ходу. Фаза сгорания показана имеющей значительную задержку между моментами времени Т2 и Т3 таким образом, что дополнительное тепло от сгорания направляется к выхлопной системе двигателя вместо того, чтобы вырабатывать дополнительную механическую энергию. Перепускная заслонка и перепускной клапан компрессора остаются открытыми для уменьшения MAP и обеспечения дополнительной задержки фазы сгорания. Количество энергии, подаваемой к запальной свече, увеличивается при увеличении процентного соотношения рециркулированных выхлопных газов, поступающих к двигателю. Температура каталитического нейтрализатора начинает повышаться при подаче дополнительной энергии к каталитическому нейтрализатору через цилиндры двигателя.

В момент времени Т3 каталитический нейтрализатор достигает температуры запуска, частота вращения двигателя снижается до более низкого расхода топлива. MAP также увеличивается, а дроссельная заслонка и перепускной клапан компрессора закрываются при достижении каталитическим нейтрализатором температуры запуска. Аналогично, электрическая энергия, поступающая к запальной свече, уменьшается до нуля. Фаза сгорания также увеличивается за счет раннего запуска впрыскивания топлива в соответствии с положением коленчатого вала двигателя. Количество рециркулированных выхлопных газов постепенно уменьшается, так как клапан EGR закрыт, двигатель забирает рециркулированные выхлопные газы от впускных коллекторов двигателя.

В этом случае двигатель и каталитический нейтрализатор нагреваются до рабочей температуры и переходят из режима прогревания каталитического нейтрализатора в номинальный рабочий режим. Действия, показанные на Фиг.3, могут уменьшить время нагревания каталитического нейтрализатора и снизить выбросы двигателя.

На Фиг.4 проиллюстрирована вторая последовательность запуска двигателя. Последовательность, представленная на Фиг.4, включает в себя основные сигналы, которые представлены на Фиг.3. В связи с этим, описание каждого графика опущено, а различия в последовательности действий описаны ниже.

В момент времени Т0 двигатель остановлен и MAP равно атмосферному давлению. Кроме того, электрическая энергия не поступает к запальной свече, перепускная заслонка и перепускной клапан компрессора закрыты в ответ на температуру каталитического нейтрализатора и/или двигателя. Температура каталитического нейтрализатора также показана выше, чем температура запуска каталитического нейтрализатора.

В момент времени Т1 двигатель запускается, но процентное соотношение рециркулированных выхлопных газов двигателя, положение перепускной заслонки и состояние запальной свечи остаются неизменными. Между моментами времени T1 и Т2 частота вращения двигателя возрастает и двигатель запускается. MAP немного уменьшается, другие сигналы остаются по существу неизменными.

В момент времени Т3 частота вращения холостого хода стабилизируется, двигатель работает без изменения остальных сигналов. Между моментами времени Т2 и Т3 фаза сгорания слегка задерживается. Фаза сгорания может быть задержана поздним впрыскиванием топлива в ответ на положение коленчатого вала двигателя. Фаза сгорания может быть задержана в данном режиме для увеличения тепла, поступающего к каталитическому нейтрализатору, в меньшей степени, чем это показано на Фиг.3.

В момент времени Т3 частота вращения холостого хода уменьшается. Частота вращения двигателя может быть уменьшена за счет уменьшения количества топлива, поступающего в цилиндры двигателя. В одном примере частота вращения холостого хода может быть увеличена на короткий период времени после запуска двигателя на основании времени с момента запуска таймера. Двигатель продолжает работать на холостом ходу после снижения частоты вращения холостого хода.

Таким образом, на Фиг.4 показано, что двигатель может работать при более низком процентном соотношении рециркулированных выхлопных газов в смеси цилиндра по сравнению с работой двигателя, показанной на Фиг.3. Как только каталитический нейтрализатор и двигатель нагреваются на этапе запуска согласно Фиг.4, может быть желательным осуществлять эксплуатацию двигателя при более низком процентном соотношении рециркулированных выхлопных газов в смеси цилиндра. В этом случае эффективность двигателя может быть увеличена при более высокой температуре двигателя.

Согласно значениям частоты вращения холостого хода двигателя, показанным на Фиг.3 и 4, в одном примере частота вращения холостого хода может иметь значение, на котором двигатель работает при отсутствии входного крутящего момента, поступающего от оператора двигателя. Более того, частота вращения холостого хода может быть отрегулирована с помощью контроллера, например частоту вращения холостого хода можно изменять при разных условиях холостого хода двигателя.

На Фиг.5 представлена блок-схема предлагаемого способа запуска двигателя. Способ согласно Фиг.5 может быть выполнен с помощью инструкций контроллера, как показано на Фиг.1.

На этапе 502 способ 500 определяет, имеет ли температура двигателя значение, меньшее, чем пороговое значение температуры. В одном примере температура двигателя может быть температурой каталитического нейтрализатора, а пороговая температура может быть температурой запуска каталитического нейтрализатора. В других примерах температура двигателя может быть температурой хладагента двигателя. Таким образом, температура двигателя может быть одной из нескольких доступных температур двигателя. Если температура двигателя меньше порогового значения, способ 500 переходит на этап 504. В противном случае, выполняется этап 526.

На этапе 504 способ 500 регулирует частоту вращения и нагрузку двигателя. В одном примере частота вращения двигателя может контролироваться за счет количества топлива, поступающего в двигатель. В других примерах частота вращения двигателя может контролироваться за счет количества топлива и количества воздуха в двигателе. В других примерах частота вращения двигателя может регулироваться за счет установки момента зажигания. Когда двигатель сопряжен с электромотором в гибридном транспортном средстве, то частота вращения и нагрузка двигателя могут регулироваться за счет управления частотой вращения и нагрузкой электромотора. Например, контроллер частоты вращения двигателя может отрегулировать частоту вращения двигателя до желаемой частоты вращения холостого хода в 1300 оборотов в минуту, в то время как электромотор обеспечит нагрузку в 25 Н·м для увеличения нагрузки двигателя. Таким образом, для того чтобы сохранить крутящий момент двигателя на уровне 1500 об/мин, контроллер двигателя должен отрегулировать количество топлива, поступающего в двигатель, для того чтобы преодолеть действие момента силы 25 Н·м, создаваемого электромотором. В одном примере частота вращения и нагрузка двигателя регулируются согласно таблице, в которой индексируются температура двигателя и время с момента запуска. Способ 500 переходит на этап 506 после изменения частоты вращения и нагрузки двигателя.

На этапе 506 способ 500 понижает MAP двигателя. MAP может быть понижено за счет изменения подачи воздуха, попадающего в двигатель, открывания перепускного клапана компрессора и открывания перепускной заслонки турбокомпрессора. Для систем, включающих в себя турбокомпрессор с изменяемой геометрией, лопатки могут быть расположены таким образом, чтобы сила, поступающая в турбину от выхлопных газов, была уменьшена по сравнению со значением, когда лопатки турбины расположены таким образом, чтобы наиболее эффективно преобразовывать энергию выхлопных газов в энергию вращения турбины. В некоторых случаях, когда перепускной клапан компрессора имеет несколько положений, он может быть частично открыт. В других случаях перепускной клапан компрессора может просто находиться в открытом состоянии. Открывание перепускного клапана компрессора может помочь снизить MAP за счет уменьшения перепада давления на корпусе дроссельной заслонки, тем самым уменьшая воздушный поток, проходящий через корпус дроссельной заслонки, и MAP. Способ 500 переходит на этап 508 после понижения MAP.

На этапе 508 способ 500 регулирует фазу сгорания двигателя. Фаза сгорания может быть отрегулирована путем задержки момента начала впрыскивания топлива. Кроме того, увеличение обеднения заряда цилиндра за счет увеличения количества рециркулированных выхлопных газов двигателя может также задержать фазу сгорания двигателя. Также фаза сгорания может регулироваться путем изменения температуры заряда цилиндра. В некоторых случаях момент впрыска топлива во время цикла цилиндра после начала сгорания может быть также отрегулирован. Например, момент начала впрыска топлива после начала сгорания может быть отрегулирован после того, как цилиндр начнет сжигать воздушно-топливную смесь. В другом случае впрыскивание топлива после сгорания может быть задержано от угла коленчатого вала в 55° после верхней мертвой точки такта сжатия до угла коленчатого вала в 60° после верхней мертвой точки такта сжатия. Способ 508 переходит на этап 510 после задержания фазы сгорания двигателя.

На этапе 510 способ 500 регулирует процентное содержание рециркулированных выхлопных газов цилиндров двигателя путем открывания клапана EGR. Процентное содержание рециркулированных выхлопных газов в смеси цилиндра двигателя увеличивается согласно уровню описанных выше условий холостого хода двигателя при нагретых двигателе и каталитическом нейтрализаторе. Дополнительное количество рециркулированных выхлопных газов может помочь задержать фазу сгорания двигателя таким образом, что дополнительное тепло поступает к выхлопной системе двигателя. Процентное содержание рециркулированных выхлопных газов в смеси цилиндра может быть также увеличено за счет увеличения времени перекрытия впускного и выпускного клапанов. В одном из случаев процентное содержание рециркулированных выхлопных газов регулируется в ответ на температуру каталитического нейтрализатора и/или температур двигателя. Например, процентное содержание рециркулированных выхлопных газов в смеси цилиндра может быть 35% в условиях холодного холостого хода и 25% в условиях теплого холостого хода. Клапан EGR может быть больше открыт в условиях холодного холостого хода по сравнению с условиями теплого холостого хода, таким образом увеличивая уровень потока рециркулированных выхлопных газов в цилиндры двигателя в условиях холодного холостого хода. Способ 500 переходит на этап 512 после регулирования EGR двигателя.

На этапе 512 способ 500 управляет запальными свечами двигателя. Запальные свечи двигателя могут продолжать получать электрическую мощность после запуска двигателя для того, чтобы стабилизировать процесс сгорания. В одном из случаев запальные свечи получают первую часть электрической мощности до или во время включения двигателя, а вторую часть электрической энергии, меньшую, чем первая, после того, как двигатель достигнет частоты холостого хода. Электрическая мощность контролирует температуру наконечника запальной свечи. В одном из случаев количество электрической энергии, поступающей к запальной свече, может зависеть от процентного содержания рециркулированных выхлопных газов в смеси цилиндра двигателя. Таким образом, количество энергии, поступающей к запальной свече, изменяется в соответствии с процентным содержание рециркулированных выхлопных газов в смеси цилиндра двигателя. Способ 500 переходит на этап 514 после изменения параметров работы запальной свечи.

Кроме того, частота вращения и нагрузка двигателя могут быть увеличены при понижении температуры двигателя за счет использования гибридного мотора, сопряженного с двигателем для стабилизации процесса сгорания, и увеличения запаса двигателя по EGR и задержке фазы сгорания.

На этапе 514 способ 500 определяет, запрошено ли увеличение крутящего момента двигателя оператором или какой-либо внешней системой (например, коробкой отбора мощности). Если да, то способ переходит на этап 516. В противном случае способ 500 возвращается обратно на этап 502.

На этапе 516 способ 500 определяет, не превышает ли заряд аккумулятора пороговое значение. Если да, то способ переходит на этап 524. В противном случае, способ 500 переходит на этап 518. Способ 500 оценивает уровень заряда аккумулятора для того, чтобы можно было определить, может ли соединенный с двигателем электромотор обеспечить необходимое число оборотов для того, чтобы каталитический нейтрализатор нагрелся быстрее. В частности, работа двигателя не может быть изменена для увеличения крутящего момента двигателя, когда запрашиваемый водителем крутящий момент двигателя может быть создан за счет электромотора. Если запрашиваемый водителем крутящий момент не может быть обеспечен только электромотором, то работа электромотора и двигателя может быть скомбинирована для обеспечения желаемого уровня крутящего момента.

На этапе 524 способ 500 регулирует выходную мощность гибридного мотора (например, электрического или гидравлического) для обеспечения увеличения крутящего момента, подаваемого к колесам транспортного средства. При увеличении крутящего момента гибридного мотора становится возможным преобразовать увеличенное количество энергии сгорания от двигателя в тепло для того, чтобы быстрее нагреть каталитический нейтрализатор выхлопной системы двигателя. В одном примере требуемый водителю крутящий момент обеспечивается колесам транспортного средства только за счет гибридного мотора до тех пор, пока требуемое водителем значение крутящего момента не превысит крутящий момент гибридного мотора. Соответственно, требуемый водителю крутящий момент обеспечивается гибридным мотором и двигателем.

На этапе 518 способ 500 увеличивает MAP таким образом, что дополнительно требуемый крутящий момент может быть обеспечен двигателем и, следовательно, эффективность двигателя может быть увеличена в условиях повышенной нагрузки. Массовый расход двигателя также может увеличиваться в условиях повышенной нагрузки таким образом, что нагревание каталитического нейтрализатора может продолжаться, даже если фаза сгорания может быть выполнена ранее для обеспечения требуемого крутящего момента двигателя. В одном примере увеличение MAP пропорционально требуемому увеличению крутящего момента двигателя. MAP может быть увеличено за счет закрывания перепускного клапана компрессора, перепускной заслонки или расположения лопаток турбины для увеличения энергии выхлопных газов, поступающих от выхлопных газов в турбину. Способ 500 переходит на этап 520 после увеличения MAP.

На этапе 520 способ 500 уменьшает процентное содержание рециркулированных выхлопных газов, подаваемых к цилиндрам, для обеспечения стабильного сгорания при более высоких значениях крутящего момента или нагрузки. Однако в некоторых случаях, когда процентное содержание рециркулированных выхлопных газов, основанное на запросе оператора, больше процентного содержания рециркулированных выхлопных газов на холостом ходу, содержание рециркулированных выхлопных газов может быть увеличено. В одном примере величина уменьшения рециркулированных выхлопных газов пропорциональна требуемому увеличению крутящего момента двигателя. Количество рециркулированных выхлопных газов может быть уменьшено за счет частичного закрывания клапана EGR и/или уменьшения перекрывания впускного и выпускного клапанов. Способ 500 переходит на этап 522 после уменьшения процентного содержания рециркулированных выхлопных газов в смеси цилиндра двигателя.

На этапе 522 способ 500 осуществляет опережение фазы сгорания двигателя таким образом, чтобы необходимый крутящий момент обеспечивался наиболее эффективным способом. Кроме того, так как работа двигателя при более высоком крутящем моменте может увеличить температуру выхлопных газов, то задержка фазы сгорания может быть уменьшена без снижения количества тепловой энергии, передаваемой выхлопным газам двигателя. Фаза сгорания может быть выполнена с опережением путем опережения момента впрыска топлива в соответствии с положением коленчатого вала двигателя. Более того, уменьшение процентного содержания рециркулированных выхлопных газов в смеси цилиндра может также обеспечить опережение фазы сгорания. В одном из случаев опережение фазы сгорания пропорционально требуемому увеличению крутящего момента. Способ 500 возвращается на этап 514 после опережения фазы сгорания.

Следовательно, после холодного запуска при отсутствии запроса оператора или внешнего запроса крутящего момента двигателя, фаза сгорания двигателя может быть задержана, количество рециркулированных выхлопных газов может быть увеличено, a MAP может быть понижено для уменьшения времени запуска каталитического нейтрализатора. Однако если существует внешний запрос крутящего момента, то фаза сгорания, количество рециркулированных выхлопных газов и MAP могут быть отрегулированы для обеспечения желаемого уровня крутящего момента двигателя при одновременном уменьшении времени запуска каталитического нейтрализатора.

На этапе 526 способ 500 регулирует частоту вращения и нагрузку двигателя для обеспечения более эффективной работы двигателя. Когда температура двигателя или каталитического нейтрализатора больше пороговой температуры, тепловая выходная мощность двигателя может быть уменьшена. В одном примере частота вращения холостого хода двигателя и массовый расход воздуха понижаются, когда температура двигателя больше порогового значения.

На этапе 528 способ 500 регулирует фазу сгорания. В частности, опережение фазы сгорания может быть выполнено таким образом, что дополнительная энергия преобразуется в механическую работу, а не в тепловую энергию. Фаза сгорания может быть отрегулирована за счет опережения начала впрыскивания топлива. Кроме того, опережение фазы сгорания может быть выполнено за счет уменьшения процентного содержания рециркулированных выхлопных газов в смеси цилиндра. Способ 500 переходит на этап 530 после регулирования фазы сгорания.

На этапе 530 способ 500 регулирует процентное содержание рециркулированных выхлопных газов в смеси цилиндра. В одном примере процентное содержание рециркулированных выхлопных газов в смеси цилиндров регулируется за счет частичного закрывания клапана EGR. Закрывание клапана EGR может уменьшить процентное содержание рециркулированных выхлопных газов в смеси цилиндра. Закрывание или частичное закрывание клапана EGR может позволить двигателю работать при более низкой нагрузке с повышенной стабильностью процесса сгорания. Клапан EGR может быть больше закрыт во время теплого холостого хода двигателя по сравнению с холодным холостым ходом двигателя. В этом случае, количество топлива, потребляемого двигателем, может быть уменьшено после того, как двигатель и/или каталитический нейтрализатор достигает пороговой температуры. Таким образом, количество рециркулированных выхлопных газов при теплом холостом ходе двигателя и заряд воздуха теплого цилиндра двигателя меньше, чем количество рециркулированных выхлопных газов при холодном холостом ходе двигателя и заряд воздуха цилиндра двигателя на холодном холостом ходу; количество рециркулированных выхлопных газов теплого холостого хода двигателя уменьшается по сравнению с количеством рециркулированных выхлопных газов холодного холостого хода на пропорционально большую величину, чем уменьшение заряда воздуха цилиндра двигателя на теплом холостом ходу по сравнению с зарядом воздуха цилиндра двигателя на холодном холостом ходу. Способ 500 переходит на этап 532 после регулирования EGR двигателя.

На этапе 528 деактивируется запальная свеча. Запальная свеча может быть деактивирована путем прекращения подачи тока к запальной свече. Когда двигатель и каталитический нейтрализатор достигают рабочей температуры, двигатель может работать с такой периодичностью впрыска и уровнем EGR, которые обеспечивают стабилизацию процесса сгорания при более низкой скорости холостого хода двигателя. Способ 500 переходит к завершению работы после деактивации запальных свечей.

Таким образом, способ, показанный на Фиг.5, представляет собой способ, включающий в себя работу двигателя на холостом ходу с первым процентным содержанием рециркулированных выхлопных газов при температуре двигателя, меньшей, чем первая температура двигателя; и работу двигателя на холостом ходу с первым процентным содержанием рециркулированных выхлопных газов при температуре двигателя, большей, чем первая температура двигателя, при этом второе процентное содержание рециркулированных выхлопных газов меньше первого процентного содержания рециркулированных выхлопных газов. В одном примере способ также включает в себя увеличение нагрузки двигателя при температуре двигателя, меньшей, чем первая температура двигателя, за счет электромотора. Частота вращения двигателя при температуре двигателя, меньшей первой температуры двигателя, больше, чем частота вращения двигателя при температуре двигателя, превышающей первую температуру двигателя. Способ также включает в себя активацию и деактивацию запальной свечи в ответ на процентное содержание рециркулированных выхлопных газов или температуру выхлопных газов двигателя. В одном примере способ также включает в себя задержку момента впрыска топлива (например, времени начала и/или окончания впрыскивания) при температуре двигателя меньше первой температуры двигателя. Работа двигателя также включает в себя впрыскивание топлива в цилиндр во время цикла цилиндра после зажигания. В другом случае способ также включает в себя уменьшение первого процентного содержания рециркулированных выхлопных газов в ответ на запрос увеличения крутящего момента. Способ также включает в себя уменьшение первого процентного содержания рециркулированных выхлопных газов при увеличении температуры каталитического нейтрализатора.

В другом примере Фиг.5 иллюстрирует способ, включающий в себя работу двигателя на холостом ходу с первой величиной заряда воздуха цилиндра и первым количеством рециркулированных выхлопных газов цилиндра, при температуре двигателя, меньшей, чем первая температура двигателя; работу двигателя на холостом ходу со второй величиной заряда воздуха цилиндра и вторым количеством рециркулированных выхлопных газов цилиндра, при температуре двигателя, большей, чем первая температура двигателя, при этом второе количество рециркулированных выхлопных газов и второй заряд воздуха цилиндра меньше первого количества рециркулированных выхлопных газов и первого заряда воздуха цилиндра, второе количество рециркулированных выхлопных газов меньше, чем первое количество рециркулированных выхлопных газов на величину, пропорционально большую, чем величина, на которую второй заряд воздуха цилиндра меньше, чем первый заряд воздуха цилиндра; а также понижение давления впускного коллектора путем открывания перепускного клапана компрессора. Способ также включает в себя понижение давления впускного коллектора за счет регулирования положения лопаток турбины или положения перепускной заслонки. Способ также включает в себя уменьшение первого процентного содержания рециркулированных выхлопных газов при наличии запроса увеличения крутящего момента. Способ также включает в себя уменьшение первого процентного содержания рециркулированных выхлопных газов при увеличении температуры каталитического нейтрализатора. В способе также используется частичное открывание перепускного клапана компрессора. Перепускной клапан компрессора открывается в ответ на давление впускного коллектора.

Специалистам в данной области техники будет понятно, что способ, описанный на Фиг.5, может воспроизводить одну или несколько стратегий выполнения, например управление по событиям, управление по прерываниям, многозадачность, многопоточность и другие. В связи с этим различные этапы или функции могут выполняться в представленной последовательности, параллельно, а в некоторых случаях могут быть пропущены. Также порядок выполнения не обязательно должен быть таким, как он показан, он приведен для наглядного представления и описания процесса. Также специалисты в данной области могут увидеть, что некоторые этапы, способы или функции могут повторяться в зависимости от используемого варианта.

Специалисты в данной области должны иметь в виду, что возможны различные варианты и модификации представленного способа без выхода за рамки объема изобретения. Например, возможно использование представленного способа для двигателей с одним цилиндром, I2, I3, I4, I5, V6, V8, V10, V12 и V16, работающих на природном газе, бензине, дизеле или другом альтернативном топливе.

Похожие патенты RU2579616C9

название год авторы номер документа
СПОСОБ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ (ВАРИАНТЫ) И СИСТЕМА УПРАВЛЕНИЯ ДВИГАТЕЛЕМ 2012
  • Расс Стефен Джордж
  • Фабьен Фил Эндрю
RU2573091C2
СПОСОБ ЭКСПЛУАТАЦИИ ДВИГАТЕЛЯ И СИСТЕМА ДВИГАТЕЛЯ 2013
  • Леоне Томас Г.
  • Мойланен Питер С.
RU2562881C2
СПОСОБ ЭКСПЛУАТАЦИИ ДВИГАТЕЛЯ И СИСТЕМА ДВИГАТЕЛЯ 2013
  • Леоне Томас Г.
  • Мойланен Питер С.
RU2617634C2
СИСТЕМА ДЛЯ ДВИГАТЕЛЯ С ТУРБОНАДДУВОМ (ВАРИАНТЫ) И СПОСОБ ДЛЯ ДВИГАТЕЛЯ С ТУРБОНАДДУВОМ 2015
  • Ремес Энрике
RU2684074C2
СПОСОБ УПРАВЛЕНИЯ ТУРБОКОМПРЕССОРОМ И СИСТЕМА ДВИГАТЕЛЯ 2013
  • Берд Кевин Дюранд
  • Плагенс Кейт Мишель
  • Руона Уильям Чарльз
RU2615858C2
СПОСОБ УЛУЧШЕНИЯ ПЕРЕХОДНЫХ ПРОЦЕССОВ ЦИРКУЛЯЦИИ ВЫХЛОПНЫХ ГАЗОВ ДВИГАТЕЛЯ (ВАРИАНТЫ) И СИСТЕМА ДВИГАТЕЛЯ 2015
  • Леоне Томас Дж.
  • Шелби Майкл Ховард
  • Глугла Крис Пол
  • Чекала Майкл Дамиан
  • Стайлз Дэниел Джозеф
RU2685782C2
СПОСОБ РАБОТЫ ДВИГАТЕЛЯ С НАДДУВОМ (ВАРИАНТЫ) И СИСТЕМА РАБОТЫ ДВИГАТЕЛЯ С НАДДУВОМ 2014
  • Уэйд Роберт Эндрю
  • Карри Дэвид
RU2665091C2
СПОСОБ ДЛЯ ДВИГАТЕЛЯ (ВАРИАНТЫ) И СИСТЕМА ДВИГАТЕЛЯ 2014
  • Глугла Крис Пол
  • Хубертс Гарлан Дж.
  • Цюй Цюпин
  • Морроу Нельсон Уилльям
RU2657248C2
СИСТЕМА И СПОСОБ УЛУЧШЕНИЯ ХАРАКТЕРИСТИК ДВИГАТЕЛЯ С ТУРБОНАДДУВОМ 2012
  • Персифулл Росс Дикстра
  • Улри Джозеф Норман
RU2579520C2
СПОСОБ ЭКСПЛУАТАЦИИ БЕНЗИНОВОГО ДВИГАТЕЛЯ С НАДДУВОМ (ВАРИАНТЫ) И БЕНЗИНОВЫЙ ДВИГАТЕЛЬ 2013
  • Стайлс Дэниэл Джозеф
  • Сурнилла Гопичандра
RU2569397C2

Иллюстрации к изобретению RU 2 579 616 C9

Реферат патента 2016 года СПОСОБ ЗАПУСКА ДВИГАТЕЛЯ И СИСТЕМА ДВИГАТЕЛЯ

Изобретение может быть использовано в двигателях внутреннего сгорания. Способ эксплуатации двигателя заключается в эксплуатации двигателя на холостом ходу с первым процентным содержанием рециркулированных выхлопных газов в заряде цилиндра, когда температура двигателя меньше первой температуры. Осуществляют эксплуатацию двигателя на холостом ходу со вторым процентным содержанием рециркулированных выхлопных газов в заряде цилиндра, меньшим, чем первое процентное содержание, когда температура двигателя больше первой температуры. Запальную свечу активируют и деактивируют в зависимости от процентного содержания рециркулированных выхлопных газов или температуры выхлопных газов двигателя. Раскрыт вариант способа эксплуатации двигателя и система двигателя. Технический результат заключается в уменьшении времени запуска каталитического нейтрализатора и в уменьшении времени прогревания двигателя. 3 н. и 16 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 579 616 C9

1. Способ эксплуатации двигателя, в котором:
осуществляют эксплуатацию двигателя на холостом ходу с первым процентным содержанием рециркулированных выхлопных газов (EGR) в заряде цилиндра, когда температура двигателя меньше первой температуры, и
осуществляют эксплуатацию двигателя на холостом ходу со вторым процентным содержанием рециркулированных выхлопных газов в заряде цилиндра, меньшим, чем первое процентное содержание, когда температура двигателя больше первой температуры, причем запальную свечу активируют и деактивируют в зависимости от процентного содержания рециркулированных выхлопных газов или температуры выхлопных газов двигателя.

2. Способ по п. 1, в котором при температуре двигателя меньше первой температуры дополнительно увеличивают нагрузку двигателя за счет электромотора.

3. Способ по п. 1, в котором при температуре двигателя меньше первой температуры частота вращения двигателя выше, чем при температуре двигателя больше первой температуры.

4. Способ по п. 1, в котором при температуре двигателя меньше первой температуры дополнительно осуществляют задержку момента впрыска топлива.

5. Способ по п. 1, в котором дополнительно осуществляют впрыскивание топлива в цилиндр во время цикла цилиндра после зажигания.

6. Способ по п. 1, в котором дополнительно уменьшают первое процентное содержание рециркулированных выхлопных газов в ответ на запрос увеличения крутящего момента.

7. Способ по п. 1, в котором дополнительно уменьшают первое процентное содержание рециркулированных выхлопных газов при увеличении температуры каталитического нейтрализатора.

8. Способ эксплуатации двигателя, в котором:
осуществляют эксплуатацию двигателя на холостом ходу с первым зарядом воздуха цилиндра и первым количеством рециркулированных выхлопных газов при температуре двигателя меньше первой температуры двигателя;
осуществляют эксплуатацию двигателя на холостом ходу со вторым зарядом воздуха цилиндра и вторым количеством рециркулированных выхлопных газов при температуре двигателя больше первой температуры двигателя, причем второе количество рециркулированных выхлопных газов и второй заряд воздуха цилиндра меньше первого количества рециркулированных выхлопных газов и первого заряда воздуха цилиндра соответственно; второе количество рециркулированных выхлопных газов уменьшают по сравнению с первым количеством рециркулированных выхлопных газов на величину, пропорциональную уменьшению второго заряда воздуха цилиндра по сравнению с первым зарядом; и
понижают давление впускного коллектора путем открывания перепускного клапана компрессора.

9. Способ по п. 8, в котором дополнительно понижают давление впускного коллектора путем регулирования положения лопаток турбины или положения перепускной заслонки и регулирования нагрузки, предоставляемой двигателю электромотором, соединенным с двигателем.

10. Способ по п. 8, в котором дополнительно уменьшают первое количество рециркулированных выхлопных газов цилиндра в ответ на запрос увеличения крутящего момента.

11. Способ по п. 8, в котором дополнительно уменьшают первое количество рециркулированных выхлопных газов цилиндра при увеличении температуры каталитического нейтрализатора.

12. Способ по п. 8, в котором перепускной клапан компрессора частично открыт.

13. Способ по п. 12, в котором перепускной клапан компрессора открывают в зависимости от давления впускного коллектора.

14. Система двигателя, содержащая двигатель, клапан EGR в пневматическом сообщении с двигателем, запальную свечу, соединенную с двигателем, и контроллер, в которой контроллер выполнен с возможностью обеспечивать работу двигателя на холостом ходу с клапаном EGR в первом положении, когда двигатель эксплуатируется при первой температуре двигателя, обеспечивать работу двигателя на холостом ходу с клапаном EGR во втором положении, когда двигатель эксплуатируется при температуре больше первой температуры двигателя, причем во втором положении клапан EGR открыт меньше, чем в первом положении; а также обеспечивать нагревание камеры сгорания двигателя после запуска с помощью запальной свечи, когда температура двигателя меньше первой температуры двигателя.

15. Система двигателя по п. 14, в которой контроллер выполнен с возможностью дополнительно обеспечивать уменьшение температуры наконечника запальной свечи при уменьшении степени открытия клапана EGR от его первого положения.

16. Система двигателя по п. 14, в которой контроллер выполнен с возможностью дополнительно обеспечивать открывание перепускного клапана компрессора, когда температура двигателя меньше первой температуры двигателя.

17. Система двигателя по п. 14, в которой контроллер выполнен с возможностью дополнительно обеспечивать открывание перепускного клапана компрессора в зависимости от давления впускного коллектора.

18. Система двигателя по п. 17, в которой контроллер выполнен с возможностью дополнительно обеспечивать открывание перепускной заслонки или регулирование положения лопаток турбины в зависимости от давления впускного коллектора, а также дополнительно обеспечивать увеличение нагрузки, предоставляемой двигателю электромотором, когда двигатель работает при первой температуре двигателя.

19. Система двигателя по п. 15, в которой контроллер выполнен с возможностью дополнительно обеспечивать задержку момента впрыска топлива при температуре двигателя меньше первой температуры двигателя.

Документы, цитированные в отчете о поиске Патент 2016 года RU2579616C9

Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1
Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1
Способ и приспособление для нагревания хлебопекарных камер 1923
  • Иссерлис И.Л.
SU2003A1
US 6138784 A, 31.10.2000;
СПОСОБ И УСТРОЙСТВО ДЛЯ СИСТЕМЫ РЕЦИРКУЛЯЦИИ ВЫХЛОПНЫХ ГАЗОВ И КЛАПАН, А ТАКЖЕ СПОСОБ И УСТРОЙСТВО РЕГУЛИРОВАНИЯ 1999
  • Эрикссон Ингемар
  • Бломквист Микаэль
RU2230212C2

RU 2 579 616 C9

Авторы

Куртц Эрик

Даты

2016-04-10Публикация

2012-06-21Подача