КОГЕРЕНТНЫЙ СУПЕРГЕТЕРОДИННЫЙ СПЕКТРОМЕТР ЭЛЕКТРОННОГО ПАРАМАГНИТНОГО РЕЗОНАНСА Российский патент 2016 года по МПК H01J49/00 G01N24/10 

Описание патента на изобретение RU2579766C1

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР).

Известен спектрометр ЭПР (патент СССР №1739751, МПК6 G01N 24/10, опубликовано 10.10.1995), содержащий сигнальный и гетеродинный генераторы СВЧ, измерительный резонатор, смесители опорного и сигнального каналов, циркулятор, измерительный резонатор, УПЧ опорного и сигнального каналов, два фазовых дискриминатора, высокостабильный опорный генератор, два синхронных детектора, два фазовращателя, третий смеситель, третий УПЧ, генератор гармоник, переключатель режимов работы и элемент перестройки резонансной частоты измерительного резонатора, а УПЧ опорного канала выполнен как нормирующий усилитель-формирователь, фазовращатели имеют фиксированный фазовый сдвиг.

Недостатки устройства заключаются в том, что в режиме стабилизации частоты сигнального генератора по внешнему (абсолютному) эталону петля ФАПЧ работает с использованием сигнала, полученного смешением сигнала стабилизируемого генератора с одним из сигналов сетки частот, полученных умножением частоты опорного высокостабильного генератора, последующего выделения и усиления разностного сигнала специальным селективным усилителем. Такое решение обладает схемотехнической и конструктивной сложностью, имеет значительные габариты, потребляет заметную мощность и является источником дополнительных фазовых шумов стабилизируемого генератора.

Другим недостатком устройства является использование как для формирования сетки опорных частот, так и в качестве опорных сигналов в фазовых дискриминаторах и фазочувствительных (синхронных) детекторах сигнала фиксированной частоты опорного высокостабильного генератора, что затрудняет построение петель ФАПЧ с использованием интегрированных микроэлектронных решений.

Наиболее близким к изобретению является спектрометр ЭПР (патент на полезную модель РФ №136578, МПК G01N 24/10 (2006.01), опубликовано 10.01.2014), содержащий сигнальный и гетеродинный генераторы СВЧ, смесители опорного и сигнального каналов, циркулятор с измерительным резонатором и элементом перестройки резонансной частоты измерительного резонатора, измерительный аттенюатор, усилители промежуточной частоты (УПЧ) опорного и сигнального каналов, два фазочастотных дискриминатора с фильтрами на выходах, два синхронных детектора, два делителя частоты, опорный генератор, устройство синтеза частот и переключатель режимов работ, при этом основной выход сигнального генератора соединен со входом измерительного аттенюатора, а его выход соединен с первым плечом циркулятора и сигнальным входом смесителя опорного канала, выход гетеродинного генератора соединен с гетеродинным входом смесителя опорного канала и с гетеродинным входом смесителя сигнального канала, второе плечо циркулятора соединено с измерительным резонатором, снабженным элементом перестройки его резонансной частоты, третье плечо циркулятора соединено со входом смесителя сигнального канала, а его выход - со входом УПЧ сигнального канала, выход которого соединен с сигнальными входами первого и второго синхронных детекторов, опорный вход первого синхронного детектора соединен с выходом устройства синтеза частот, опорный вход первого фазочастотного дискриминатора соединен со вторым выходом устройства синтеза частот, причем величина частоты на нем равна частоте первого выхода, деленной на коэффициент деления первого делителя частоты, а фаза регулируется, выход смесителя опорного канала соединен со входом усилителя промежуточной частоты, выполненного в виде нормирующего усилителя формирователя напряжения, а его выход соединен со входом первого делителя частоты, выход которого соединен со вторым входом первого фазочастотного дискриминатора, вспомогательный выход сигнального генератора соединен с делителем частоты, выход которого соединен с одним из входов второго фазочастотного дискриминатора, второй вход которого соединен с выходом устройства синтеза частот, выход первого фазочастотного дискриминатора соединен с управляющим электродом гетеродинного генератора, выход второго фазочастотного дискриминатора соединен с двумя контактами первой группы трехпозиционного переключателя, общий контакт которой соединен с управляющим электродом сигнального генератора, общий контакт второй группы соединен с элементом перестройки резонансной частоты измерительного резонатора, а выход опорного генератора соединен со входом устройства синтеза частот.

Недостатком устройства является невысокая точность взаимной стабилизации резонансной частоты измерительного резонатора и сигнального генератора, что связано с влиянием смещения напряжения и шумов на выходе синхронного детектора, выделяющего сигнал, пропорциональный величине взаимной расстройки.

Задача изобретения - эффективное устранение нежелательного влияния смещения напряжения и шумов в сигнале отработки системы автоматической подстройки частоты с целью уменьшения величины взаимной расстройки сигнального генератора и измерительного резонатора.

Поставленная задача решается за счет того, что когерентный супергетеродинный спектрометр ЭПР, включающий сигнальный и гетеродинный генераторы СВЧ, смесители опорного и сигнального каналов, циркулятор с измерительным резонатором и элементом перестройки резонансной частоты измерительного резонатора, измерительный аттенюатор, усилители промежуточной частоты (УПЧ) опорного и сигнального каналов, два фазочастотных дискриминатора с фильтрами на выходах, два синхронных детектора, два делителя частоты, опорный генератор, устройство синтеза частот и переключатель режимов работ, при этом основной выход сигнального генератора соединен со входом измерительного аттенюатора, а его выход соединен с первым плечом циркулятора и сигнальным входом смесителя опорного канала, выход гетеродинного генератора соединен с гетеродинным входом смесителя опорного канала и с гетеродинным входом смесителя сигнального канала, второе плечо циркулятора соединено с измерительным резонатором, снабженным элементом перестройки его резонансной частоты, третье плечо циркулятора соединено со входом смесителя сигнального канала, а его выход - со входом УПЧ сигнального канала, выход которого соединен с сигнальными входами первого и второго синхронных детекторов, опорный вход первого синхронного детектора соединен с выходом устройства синтеза частот, опорный вход первого фазочастотного дискриминатора соединен со вторым выходом устройства синтеза частот, причем величина частоты на нем равна частоте первого выхода, деленной на коэффициент деления первого делителя частоты, а фаза регулируется, выход смесителя опорного канала соединен со входом усилителя промежуточной частоты, выполненного в виде нормирующего усилителя формирователя напряжения, а его выход соединен со входом первого делителя частоты, выход которого соединен со вторым входом первого фазочастотного дискриминатора, вспомогательный выход сигнального генератора соединен с делителем частоты, выход которого соединен с одним из входов второго фазочастотного дискриминатора, второй вход которого соединен с выходом устройства синтеза частот, выход первого фазочастотного дискриминатора соединен с управляющим электродом гетеродинного генератора, выход второго фазочастотного дискриминатора соединен с двумя контактами первой группы трехпозиционного переключателя, общий контакт которой соединен с управляющим электродом сигнального генератора, общий контакт второй группы соединен с элементом перестройки резонансной частоты измерительного резонатора, а выход опорного генератора соединен со входом устройства синтеза частот, согласно изобретению дополнительно содержит выход устройства синтеза частот, импульсный модулятор фазы (0/π), усилитель переменного тока, импульсный демодулятор с фильтром на выходе, при этом вход импульсного модулятора соединен с выходом устройства синтеза частот с частотой, равной частоте на опорном входе первого синхронного детектора, и сдвигом фазы на π/2, выход модулятора соединен с опорным входом второго синхронного детектора, а управляющий вход - с дополнительным выходом устройства синтеза частот, выход второго синхронного детектора соединен со входом усилителя переменного тока, выход которого соединен со входом импульсного демодулятора, управляющий вход которого соединен с дополнительным выходом устройства синтеза частот, а выход через фильтр соединен с контактами в обеих группах трехпозиционного переключателя.

На чертеже представлена блок-схема когерентного супергетеродинного спектрометра ЭПР.

Устройство содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смеситель опорного 4 и сигнального 5 каналов, циркулятор 6, измерительный резонатор 7 с элементом перестройки его резонансной частоты 8, УПЧ опорного 9 и сигнального 10 каналов, фазочастотные дискриминаторы 11 и 12, делители частоты 13 и 14, синхронные детекторы 15 и 16, опорный генератор 17, устройство синтеза частот 18, трехпозиционный переключатель 19, импульсный модулятор фазы 20, усилитель переменного тока 21 и импульсный демодулятор 22.

Работа устройства поясняется следующим рассмотрением.

Сигнал ПЧ s(t) на входах синхронных детекторов 15 и 16 при соответствующем выборе начальной фазы пропорционален

s(t)=Г′cos(ωt)-Г′′sin(ωt),

где

ω - промежуточная частота.

Для правильного разделения квадратурных компонент сигнала применяется опорный сигнал sr(t) вида

sr(t)=sin(ωt)

Тогда на выходе синхронного детектора 16 получим

После устранения сигналов на двойной промежуточной частоте фильтрацией получаем сигнал Г′′ в видеополосе, несущий информацию о расстройке измерительного резонатора и сигнального генератора СВЧ, который может быть использован для автоматической подстройки частоты (АПЧ).

Работа петли автоматического регулирования частоты описывается уравнением

где Fr(s) - лапласовый образ частоты сравнения дискриминатора (резонатора),

Fo(s) - лапласовый образ выходной частоты,

Fd(s) - лапласовый образ нежелательного отклонения частоты, которое подлежит подавлению,

FN(s) - лапласовый образ паразитного вклада, могущего воздействовать на какую-либо точку петли,

T(s)=G1(s)G2(s) - петлевое усиление (усиление разомкнутой петли),

G1(s) - передаточная функция части цепи до точки инжекции помехи, включающая в себя передаточную функцию дискриминатора [V/Hz],

G2(s) - передаточная функция части цепи после точки инжекции помехи, включающая в себя передаточную функцию генератора, управляемого напряжением (ГУНа) [Hz/V].

Из приведенного уравнения видно, что для эффективного подавления нежелательного отклонения частоты Fd(s) необходимо обеспечить большую величину петлевого усиления T(s). Поскольку коэффициент передачи элементов петли, находящихся в общей части канала регистрации, вплоть до входов синхронных детекторов определяется требованиями оптимальной регистрации спектра ЭПР, недостающее усиление должно обеспечиваться в части цепи после выхода синхронного детектора 16. Выход синхронного детектора 16 является точкой инжекции нежелательных шумов, вызванных смещением выходного напряжения самого синхронного детектора, и шумов, приведенных ко входу следующего за ним видеоусилителя. Поскольку усиление после точки инжекции G2(s) оказывается весьма большим, то эти помехи, согласно уравнению подавляемые в G2(s) раз меньше, чем Fd(s), приводят к плохой работе системы АПЧ.

В предлагаемом техническом решении указанная проблема решается следующим образом. Опорный сигнал синхронного детектора 16 подвергается фазовой модуляции прямоугольным сигналом со скважностью 2 (меандром), изменяющим фазу на π. Таким образом, каждые полпериода модуляции опорный сигнал меняет знак

srM(t)=±sin(ωt)

Соответственно, выходной сигнал синхронного детектора 16 (компоненты в окрестности двойной промежуточной частоты опущены) также меняет знак

Далее, сигнал на частоте модуляции усиливается в необходимое количество раз и подвергается импульсной демодуляции, математически описываемой умножением сигнала на меандр на частоте модуляции в соответствующей фазе, принимающий значения ±1. При этом полезный сигнал восстанавливается, а нежелательные шумы, вносимые синхронным детектором и усилителем модулируются в демодуляторе. Окончательно, выходной сигнал поступает на НЧ фильтр, выполняющий функции устранения нежелательных компонент на частоте модуляции и ее гармониках, а также формирующий необходимую диаграмму Боде петли автоматического регулирования.

Рассмотренный процесс модуляционной обработки сигнала описывается следующим образом.

Пусть опорный сигнал на промежуточной частоте, поступающий на вход модулятора 20, имеет вид

sr(t)=sin(ωt),

где ω - промежуточная частота.

Тогда после импульсной фазовой модуляции (0/π) меандром частоты Ω получим на выходе

Этот сигнал подается на опорный вход синхронного детектора (16), на сигнальный вход которого поступает информационный сигнал

s(t)=Г′cos(ωt)-Г′′sin(ωt)

На выходе синхронного детектора (16) формируется сигнал

Первое и третье слагаемые в фигурных скобках описывают группы комбинационных частот в окрестности удвоенной промежуточной частоты, которые не попадают в полосу пропускания канала и могут не учитываться в дальнейшем.

Шумы и смещение на выходе синхронного детектора 16, а также шумы и смещение усилителя переменного тока 21, приведенные к его входу, могут быть учтены аддитивной добавкой N к выражению для VSDM(t)

Этот сигнал поступает на вход усилителя 21, усиление G которого выбирается из требований обеспечения необходимой точности автоподстройки. Может быть применен достаточно узкополосный усилитель с полосой пропускания в окрестности частоты модуляции Ω, что положительно скажется на фильтрации нежелательного спектра в окрестности нулевой частоты и на гармониках частоты модуляции. Усиленный сигнал подается на вход импульсного демодулятора 22, осуществляющего умножение входного сигнала на двуполярный меандр частоты Ω и амплитуды 1. Такой меандр может быть представлен рядом

Тогда выходной сигнал демодулятора

Первое слагаемое суммы даст вклад на нулевой частоте вида

а также бесконечный ряд убывающих по величине спектральных компонент на частоте модуляции Ω и ее высших гармониках. Шумовой вклад, пропорциональный N, описываемый вторым слагаемым, окажется также на частоте модуляции и на ее нечетных гармониках, убывая, по величине с номером гармоники.

Для формирования диаграммы Боде, соответствующей устойчивой работе петли автоматического регулирования, в петлю регулирования должен быть введен фильтр НЧ. Таким образом, если частота модуляции Ω выбрана много меньшей промежуточной частоты ω и много большей частоты единичного усиления петли АПЧ, то можно расположить формирующий диаграмму Боде фильтр НЧ на выходе демодулятора 24, одновременно обеспечив необходимые динамические характеристики петли регулирования и эффективно отфильтровав нежелательные спектральные составляющие на частоте модуляции и ее гармониках. Тогда на выходе фильтра получим

Полученный сигнал свободен от вклада нежелательных шумов и может быть использован для высококачественной автоподстройки частоты.

Похожие патенты RU2579766C1

название год авторы номер документа
Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса 2015
  • Рокеах Александр Ицекович
  • Артёмов Михаил Юрьевич
RU2614181C1
КОГЕРЕНТНЫЙ СУПЕРГЕТЕРОДИННЫЙ СПЕКТРОМЕТР ЭЛЕКТРОННОГО ПАРАМАГНИТНОГО РЕЗОНАНСА 2013
  • Рокеах Александр Ицекович
  • Артёмов Михаил Юрьевич
RU2548293C2
КОГЕРЕНТНЫЙ СУПЕРГЕТЕРОДИННЫЙ СПЕКТРОМЕТР ЭЛЕКТРОННОГО ПАРАМАГНИТНОГО РЕЗОНАНСА 2013
  • Рокеах Александр Ицекович
  • Артёмов Михаил Юрьевич
RU2569485C2
КОГЕРЕНТНЫЙ СУПЕРГЕТЕРОДИННЫЙ СПЕКТРОМЕТР ЭЛЕКТРОННОГО ПАРАМАГНИТНОГО РЕЗОНАНСА 1990
  • Рокеах А.И.
  • Шерстков Ю.А.
SU1739751A1
ЧАСТОТНЫЙ ДЕТЕКТОР РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ 2006
  • Ри Бак Сон
RU2318291C1
Спектрометр электронного парамагнитногоРЕзОНАНСА 1976
  • Жидович Владимир Антонович
  • Линев Владимир Николаевич
  • Рутковский Иван Зенонович
  • Стельмах Вячеслав Фомич
  • Шушкевич Станислав Станославович
SU851215A1
ЧАСТОТНЫЙ ДЕТЕКТОР РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ 2006
  • Ри Бак Сон
RU2316889C1
СИСТЕМА ДВУСТОРОННЕЙ СВЕРХВЫСОКОЧАСТОТНОЙ РАДИОСВЯЗИ 2008
  • Катанович Андрей Андреевич
  • Беда Сергей Иванович
  • Васюков Владимир Львович
  • Ивченко Борис Павлович
  • Шевченко Виктор Григорьевич
RU2366083C1
УСТРОЙСТВО ДЛЯ НАБЛЮДЕНИЯ И ИЗМЕРЕНИЯ АМПЛИТУДНО-ЧАСТОТНЫХ И ФАЗОЧАСТОТНЫХ ХАРАКТЕРИСТИК ЧЕТЫРЕХПОЛЮСНИКОВ С ПРЕОБРАЗОВАТЕЛЕМ ЧАСТОТЫ 2006
  • Коротков Константин Станиславович
RU2310874C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ АМПЛИТУДНО-ЧАСТОТНЫХ И ФАЗОЧАСТОТНЫХ ХАРАКТЕРИСТИК ЧЕТЫРЕХПОЛЮСНИКОВ С ПРЕОБРАЗОВАТЕЛЕМ ЧАСТОТЫ 2004
  • Коротков К.С.
RU2257592C1

Иллюстрации к изобретению RU 2 579 766 C1

Реферат патента 2016 года КОГЕРЕНТНЫЙ СУПЕРГЕТЕРОДИННЫЙ СПЕКТРОМЕТР ЭЛЕКТРОННОГО ПАРАМАГНИТНОГО РЕЗОНАНСА

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Спектрометр содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смеситель опорного 4 и сигнального 5 каналов, циркулятор 6, измерительный резонатор 7 с элементом перестройки его резонансной частоты 8, УПЧ опорного 9 и сигнального 10 каналов, фазочастотные дискриминаторы 11 и 12, делители частоты 13 и 14, синхронные детекторы 15 и 16, опорный генератор 17, устройство синтеза частот 18, трехпозиционный переключатель 19, импульсный модулятор фазы 20, усилитель переменного тока 21 и импульсный демодулятор 22. Технический результат - повышение точности работы системы автоподстойки частоты сигнального генератора и резонансной частоты измерительного резонатора. 1 ил.

Формула изобретения RU 2 579 766 C1

Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса, включающий сигнальный и гетеродинный генераторы СВЧ, смесители опорного и сигнального каналов, циркулятор с измерительным резонатором и элементом перестройки резонансной частоты измерительного резонатора, измерительный аттенюатор, усилители промежуточной частоты (УПЧ) опорного и сигнального каналов, два фазочастотных дискриминатора с фильтрами на выходах, два синхронных детектора, два делителя частоты, опорный генератор, устройство синтеза частот и переключатель режимов работ, при этом основной выход сигнального генератора соединен со входом измерительного аттенюатора, а его выход соединен с первым плечом циркулятора и сигнальным входом смесителя опорного канала, выход гетеродинного генератора соединен с гетеродинным входом смесителя опорного канала и с гетеродинным входом смесителя сигнального канала, второе плечо циркулятора соединено с измерительным резонатором, снабженным элементом перестройки его резонансной частоты, третье плечо циркулятора соединено со входом смесителя сигнального канала, а его выход - со входом УПЧ сигнального канала, выход которого соединен с сигнальными входами первого и второго синхронных детекторов, опорный вход первого синхронного детектора соединен с выходом устройства синтеза частот, опорный вход первого фазочастотного дискриминатора соединен со вторым выходом устройства синтеза частот, причем величина частоты на нем равна частоте первого выхода, деленной на коэффициент деления первого делителя частоты, а фаза регулируется, выход смесителя опорного канала соединен со входом усилителя промежуточной частоты, выполненного в виде нормирующего усилителя формирователя напряжения, а его выход соединен со входом первого делителя частоты, выход которого соединен со вторым входом первого фазочастотного дискриминатора, вспомогательный выход сигнального генератора соединен с делителем частоты, выход которого соединен с одним из входов второго фазочастотного дискриминатора, второй вход которого соединен с выходом устройства синтеза частот, выход первого фазочастотного дискриминатора соединен с управляющим электродом гетеродинного генератора, выход второго фазочастотного дискриминатора соединен с двумя контактами первой группы трехпозиционного переключателя, общий контакт которой соединен с управляющим электродом сигнального генератора, общий контакт второй группы соединен с элементом перестройки резонансной частоты измерительного резонатора, а выход опорного генератора соединен со входом устройства синтеза частот, отличающий тем, что он дополнительно содержит выход устройства синтеза частот, импульсный модулятор фазы (0/π), усилитель переменного тока, импульсный демодулятор с фильтром на выходе, при этом вход импульсного модулятора соединен с выходом устройства синтеза частот с частотой, равной частоте на опорном входе первого синхронного детектора, и сдвигом фазы на π/2, выход модулятора соединен с опорным входом второго синхронного детектора, а управляющий вход - с дополнительным выходом устройства синтеза частот, выход второго синхронного детектора соединен со входом усилителя переменного тока, выход которого соединен со входом импульсного демодулятора, управляющий вход которого соединен с дополнительным выходом устройства синтеза частот, а выход через фильтр соединен с контактами в обеих группах трехпозиционного переключателя.

Документы, цитированные в отчете о поиске Патент 2016 года RU2579766C1

Прибор для автоматического циклического измерения температуры плавления веществ, например гидрируемого жира 1960
  • Высочин В.А.
SU136578A1
КОГЕРЕНТНЫЙ СУПЕРГЕТЕРОДИННЫЙ СПЕКТРОМЕТР ЭЛЕКТРОННОГО ПАРАМАГНИТНОГО РЕЗОНАНСА 1990
  • Рокеах А.И.
  • Шерстков Ю.А.
SU1739751A1
US 6472874B1, 29.10.2002
Устройство для контроля и регулирования глубины хода рабочих органов 1976
  • Дегтярев Виктор Андреевич
  • Левитанус Адольф Давидович
  • Кузьмин Борис Иосифович
  • Евстратов Александр Михайлович
SU665832A1
US 2011148414A1, 23.06.2011.

RU 2 579 766 C1

Авторы

Рокеах Александр Ицекович

Артёмов Михаил Юрьевич

Даты

2016-04-10Публикация

2014-11-25Подача