КОРПУС ГЕНЕРАТОРА ИМПУЛЬСНЫХ НАПРЯЖЕНИЙ Российский патент 2016 года по МПК H03K3/01 

Описание патента на изобретение RU2580101C1

Изобретение относится к импульсной высоковольтной технике и может быть использовано в составе любого высоковольтного оборудования, например в химических лазерных установках.

Известен температурный компенсатор, позволяющий поддерживать равномерное давление внутри скважинного инструмента, содержащий корпус, разделенный на две сообщающиеся камеры. Первая камера заполнена практически несжимаемым флюидом и связана с эластичным баллоном, заполненным рабочей жидкостью для управления скважинным инструментом. Вторая камера заполнена сжимаемым флюидом. Между камерами не происходит перетекания флюидов, и при температурных колебаниях рабочей жидкости изменение объема данной системы компенсируется за счет второй камеры, поддерживая постоянное давление рабочей жидкости (патент ЕПВ №1165934, Е21В 33/127, 07.04.2000 г.).

Недостатком данного температурного компенсатора является наличие множества кольцевых уплотнений и двух подвижных поршней, что требует высокой точности изготовления и усложняет конструкцию.

Наиболее близким к изобретению является генератор импульсов напряжения, собранный по схеме Маркса, содержит несколько каскадов с конденсаторами и разрядником в каждом каскаде. Конденсаторы в каскаде собраны в пакет, ось разрядника параллельна оси пакета конденсаторов. Оси всех пакетов конденсаторов расположены в одной плоскости, а оси всех разрядников в другой плоскости, параллельной плоскости осей пакетов. Эти плоскости максимально приближены друг к другу, что достигается таким взаимным расположением элементов генератора, при котором расстояния от оси любого пакета конденсаторов до осей соседних разрядников, электрически соединенных с ним, равны. Кроме того, генератор содержит зарядные индуктивности, импульсный трансформатор и нагрузку (например, рентгеновскую трубку). Все элементы генератора импульсов напряжений, импульсный трансформатор и нагрузка располагаются в корпусе, заполненном жидким диэлектриком (патент РФ на изобретение №2091980, H03K 3/00, 21.04.1995 г.).

Данная конструкция не учитывает то, что в процессе работы генератор импульсов напряжения как сам выделяет тепло, так и может подвергаться воздействиям температуры внешней среды, что неизбежно приводит к тепловому изменению объема жидкого диэлектрика. Данное изменение объема не играет роли в случае, когда корпус генератора импульсов напряжения выполнен негерметичным. Однако при этом будет происходить насыщение жидкого диэлектрика воздухом и влагой, что негативно скажется на его свойствах и потребует увеличения габаритов корпуса для обеспечения электропрочности. В случае если корпус выполнен герметичным, возникает необходимость в системе компенсации температурного изменения объема жидкого диэлектрика. Данная система в прототипе не предусмотрена, что может повлечь нарушение целостности корпуса в процессе работы.

Техническим результатом, на решение которого направлено предлагаемое изобретение, является совершенствование корпуса генератора импульсных напряжений с целью обеспечения возможности работы генератора импульсных напряжений (ГИН) в широком диапазоне температур при его закреплении в любом положении и с целью исключения контакта диэлектрической жидкости с окружающей средой.

Технический результат достигается тем, что корпус генератора импульсных напряжений, содержащий аппаратуру генератора импульсных напряжений, заполненный диэлектрической жидкостью, выполнен в виде герметичной емкости, на наружной поверхности которой герметично установлены два снабженных обратными клапанами компенсационных бачка, сопряженных с внутренним объемом корпуса и содержащих герметичные газовые полости и гибкие выпуклые мембраны, отделяющие эти полости от полостей, заполненных диэлектрической жидкостью. Корпус также снабжен ребрами жесткости, а аппаратура генератора импульсных напряжений размещена на плите, которая, в свою очередь, установлена на направляющих корпуса. На торце корпуса расположено отверстие, сопряженное с проходящей по всей длине корпуса трубкой, для заливки диэлектрической жидкости и поступления воздуха при ее сливе, а также отверстие для выхода воздуха при заливке диэлектрической жидкости и слива диэлектрической жидкости. Помимо этого на торце корпуса имеется смотровой купол, снабженный отверстием для выхода воздуха и защитными дугами. Таким образом, заявляемый корпус обеспечивает возможность работы ГИН в широком диапазоне температур при его закреплении в любом положении и исключает контакт диэлектрической жидкости с окружающей средой.

Предлагаемый корпус генератора импульсных напряжений (корпус ГИН) представлен на фиг. 1-4. На фиг. 1 представлен вид спереди корпуса ГИН. На фиг. 2 показан поперечный разрез корпуса ГИН. На фиг. 3 - вид на торец корпуса ГИН. На фиг. 4 - фрагмент корпуса ГИН в продольном разрезе, содержащий компенсационные бачки.

Корпус ГИН содержит герметичную обечайку поз. 1, на которой имеются ребра жесткости поз. 2, обеспечивающие прочность корпуса ГИН при перепадах внутреннего давления. Внутри корпуса ГИН установлены направляющие поз. 3, предназначенные для установки и закрепления плиты поз. 4 с установленной на ней аппаратурой ГИН. На корпусе ГИН располагаются крышки поз. 5, имеющие герметичные уплотнения и обеспечивающие доступ к направляющим в местах крепления к ним плиты поз. 4 с установленной на ней аппаратурой ГИН, а также крышка поз. 6, имеющая герметичные уплотнения, обеспечивающая возможность установки в направляющие поз. 3 плиты поз. 4 с установленной на ней аппаратурой ГИН и содержащая герметичные пробки поз. 7 и поз. 8, смотровой купол поз. 9, имеющий герметично закрываемым винтом отверстие. На крышке поз. 6 также располагаются защитные дуги поз. 10 и посадочные места для электрических разъемов поз. 11. Помимо этого корпус ГИН содержит крепежный фланец поз. 12, изолятор с токопроводом поз. 13, заливочную трубку поз. 14, закрепленную внутри герметичной обечайки поз. 1, соединенную с отверстием во фланце крышки поз. 6, расположенным соосно с пробкой поз. 7 и не доходящую некоторое расстояние до крепежного фланца поз. 12, компенсационные бачки поз. 15 и поз. 16, сопряженные с внутренним объемом корпуса ГИН и содержащие герметичные газовые полости и гибкие выпуклые мембраны поз. 17 и поз. 18, отделяющие эти полости от полостей, заполненных диэлектрической жидкостью. Компенсационные бачки, в свою очередь, содержат газовые клапаны поз. 19 и поз. 20, сопряженные с их газовыми полостями. На четырех парах соседних ребер жесткости поз. 2 находятся четыре подъемных крепления поз. 21, установленные таким образом, чтобы они одновременно выступали за габариты фланца поз. 12 и фланцев крышек поз. 6 и поз. 5, что обеспечивает возможность подъема корпуса ГИН в любых его положениях. Дополнительные отверстия в данных креплениях также удобно использовать для закрепления корпуса ГИН при монтаже.

Объемы полостей выпуклых мембран поз. 17 и поз. 18 рассчитываются таким образом, чтобы при заливке имеющей заданную температуру (например, 20±2°C) диэлектрической жидкости обеспечить без дополнительных поджатий выпуклых мембран поз. 17 и поз. 18 компенсацию расширения и уменьшения объема диэлектрической жидкости в пределах заданного рабочего диапазона температур корпуса ГИН.

Объемы газовых полостей компенсационных бачков поз. 15 и поз. 16 (при крайнем положении выпуклых мембран поз. 17 и поз. 18 согласно фиг.4) определяются исходя из условия сохранения прочности этих бачков под воздействием внутреннего давления, меняющегося вследствие расширения либо сжатия данных полостей при тепловом изменении объема диэлектрической жидкости.

Ограничителем хода мембран поз. 17 и поз. 18 при компенсации теплового изменения объема диэлектрической жидкости, препятствующим их растягиванию, служат стенки компенсационных бачков поз. 15 и поз. 16.

Компенсационный бачок поз. 15 с целью упрощения конструкции может быть выполнен без выделенной газовой полости (такой как в компенсационном бачке поз. 16), при этом объем полости мембраны поз. 17 должен быть увеличен на величину объема отсутствующей полости.

Заливка корпуса ГИН диэлектрической жидкостью производится следующим образом. Сначала через газовый клапан поз. 19 в газовую полость компенсационного бачка поз. 15 подается газ под давлением, превышающим максимальное давление столба жидкости на уровне компенсационного бачка поз. 15. В результате этого мембрана поз. 17 становится в свое крайнее положение согласно фиг. 4. Затем при вертикальном положении корпуса ГИН (крепежным фланцем поз. 12 вниз) через пробку поз. 7 (при открытой пробке поз. 8 и открытом отверстии смотрового купола поз. 9) подается диэлектрическая жидкость до полного заполнения внутренней полости корпуса ГИН. При этом мембрана поз. 18 под давлением столба диэлектрической жидкости также становится в свое крайнее положение согласно фиг. 4. Пробки поз. 7, поз. 8 и отверстие смотрового купола поз. 9 закрываются, после чего газ под давлением, равным давлению в компенсационном бачке поз. 15, подается через газовый клапан поз. 20 в газовую полость компенсационного бачка поз. 16.

Описанный процесс заливки обеспечивает установку мембран поз. 17 и поз. 18 в начальное положение (согласно фиг. 4), а также плавное повышение уровня диэлектрической жидкости от нижней части корпуса, за счет чего минимизируется насыщение ее газами и влагой, содержащимися в воздухе. Пробка поз. 8 и отверстие в смотровом куполе поз. 9 при необходимости позволяют производить вакуумирование корпуса ГИН.

Компенсационные бачки поз. 15 и поз. 16 при изменении температуры диэлектрической жидкости работают следующим образом. Пока температура диэлектрической жидкости равна температуре диэлектрической жидкости при заливке (например, 20±2°С), обе мембраны поз. 17 и поз. 18 находятся в своих начальных крайних положениях (согласно фиг. 4). При повышении температуры диэлектрической жидкости (например, до +50°C) происходит ее расширение, при этом мембрана поз. 17 компенсационного бачка поз. 15 начинает прогибаться, компенсируя данное расширение. В то же время, мембрана поз. 18 компенсационного бачка поз. 16 остается неподвижной. При понижении температуры диэлектрической жидкости (например, до -50°C) происходит уменьшение ее объема. При этом мембрана поз. 17 компенсационного бачка поз. 15 встает на свое начальное крайнее положение, и прогибаться начинает мембрана поз. 18 компенсационного бачка поз. 16, компенсируя таким образом данное уменьшение объема. При этом герметичность корпуса сохраняется.

Таким образом, заявляемый корпус ГИН обеспечивает возможность работы ГИН в широком диапазоне температур, сохраняя при этом герметичность вне зависимости от своей ориентации в пространстве.

Похожие патенты RU2580101C1

название год авторы номер документа
ГЕНЕРАТОР ИМПУЛЬСНОГО НАПРЯЖЕНИЯ 2006
  • Куропаткин Юрий Петрович
  • Зенков Дмитрий Иванович
  • Ткачук Анатолий Александрович
  • Шамро Олег Алексеевич
  • Нижегородцев Владимир Иванович
RU2317637C1
МОБИЛЬНЫЙ ГЕНЕРАТОР ИМПУЛЬСНЫХ НАПРЯЖЕНИЙ И ТОКОВ 2010
  • Чулков Андрей Николаевич
  • Смирнов Игорь Александрович
  • Виноградов Андрей Александрович
RU2488132C2
Датчик давления сыпучих материалов 1975
  • Джунь Владимир Алексеевич
  • Часовских Василий Андрианович
SU556361A1
ЭЛЕКТРОГЕНЕРАТОР ПИТАНИЯ СКВАЖИННОГО ПРИБОРА 2010
  • Болотин Николай Борисович
RU2401498C1
ЭЛЕКТРОГЕНЕРАТОР ПИТАНИЯ СКВАЖИННОЙ АППАРАТУРЫ 2010
  • Болотин Николай Борисович
RU2417311C1
СИЛЬНОТОЧНЫЙ ГАЗОНАПОЛНЕННЫЙ РАЗРЯДНИК 2003
  • Горностай-Польский С.А.
  • Гришин А.В.
  • Балябин М.Г.
  • Жильцов А.В.
RU2241288C2
МАГНИТНЫЙ КОМПАС 2005
  • Кардашинский-Брауде Леонид Александрович
  • Пугачев Валерий Николаевич
  • Шорохов Владилен Федорович
  • Юлпатов Евгений Константинович
RU2305825C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ВАКУУМИРОВАНИЯ И МАСЛОЗАПОЛНЕНИЯ ВЫСОКОВОЛЬТНОГО КОНДЕНСАТОРНОГО БЛОКА 2011
  • Картелев Анатолий Яковлевич
  • Хаецкий Владимир Степанович
RU2462779C1
ГЕНЕРАТОР ПИТАНИЯ ЗАБОЙНОЙ ТЕЛЕМЕТРИЧЕСКОЙ СИСТЕМЫ 2010
  • Болотин Николай Борисович
RU2400906C1
ЭЛЕКТРОДНОЕ УСТРОЙСТВО, ИНТЕГРИРОВАННОЕ В ИНДИВИДУАЛЬНЫЙ КОСТЮМ, И СПОСОБЫ ЕГО ПРИМЕНЕНИЯ 2005
  • Рык Михаил Александрович
RU2338455C2

Иллюстрации к изобретению RU 2 580 101 C1

Реферат патента 2016 года КОРПУС ГЕНЕРАТОРА ИМПУЛЬСНЫХ НАПРЯЖЕНИЙ

Изобретение относится к импульсной высоковольтной технике и может быть использовано в составе высоковольтного оборудования. Сущность изобретения: корпус генератора импульсных напряжений, содержащий аппаратуру генератора импульсных напряжений, заполненный диэлектрической жидкостью, выполнен в виде герметичной емкости, на наружной поверхности которой герметично установлены два снабженных обратными клапанами компенсационных бачка, сопряженных с внутренним объемом корпуса и содержащих герметичные газовые полости и гибкие выпуклые мембраны, отделяющие эти полости от полостей, заполненных диэлектрической жидкостью. Корпус также снабжен ребрами жесткости, а аппаратура генератора размещена на плите, установленной на направляющих корпуса. На торце корпуса расположено отверстие, сопряженное с проходящей по всей длине корпуса трубкой, для заливки диэлектрической жидкости и поступления воздуха при ее сливе, а также отверстие для выхода воздуха при заливке и сливе диэлектрической жидкости. Помимо этого на торце корпуса имеется смотровой купол, с отверстием для выхода воздуха и защитными дугами. Технический результат - расширение диапазона рабочей температуры при его закреплении в любом положении и с целью исключения контакта диэлектрической жидкости с окружающей средой. 5 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 580 101 C1

1. Корпус генератора импульсных напряжений, содержащий аппаратуру генератора импульсных напряжений, заполненный диэлектрической жидкостью, отличающийся тем, что указанный корпус генератора выполнен в виде герметичной емкости, на наружной поверхности которой герметично установлены два компенсационных бачка, сопряженных с внутренним объемом корпуса и содержащих герметичные газовые полости и гибкие выпуклые мембраны, отделяющие эти полости от полостей, заполненных диэлектрической жидкостью.

2. Корпус генератора по 1, отличающийся тем, что компенсационные бачки снабжены газовыми обратными клапанами.

3. Корпус генератора по 1, отличающийся тем, что корпус снабжен ребрами жесткости.

4. Корпус генератора по 1, отличающийся тем, что аппаратура генератора импульсных напряжений размещена на плите, которая, в свою очередь, установлена на направляющих корпуса.

5. Корпус генератора по 1, отличающийся тем, что на торце корпуса имеется отверстие, сопряженное с проходящей по всей длине корпуса трубкой, для заливки диэлектрической жидкости и поступления воздуха при ее сливе, а также отверстие для выхода воздуха при заливке диэлектрической жидкости и слива диэлектрической жидкости.

6. Корпус генератора по 1, отличающийся тем, что на торце корпуса имеется смотровой купол, снабженный отверстием для выхода воздуха и защитными дугами.

Документы, цитированные в отчете о поиске Патент 2016 года RU2580101C1

ГЕНЕРАТОР ИМПУЛЬСОВ НАПРЯЖЕНИЯ 1995
  • Эльяш С.Л.
  • Москвин Н.И.
  • Королев В.Н.
  • Калиновская Н.И.
RU2091980C1
ГЕНЕРАТОР ИМПУЛЬСНОГО НАПРЯЖЕНИЯ 2006
  • Куропаткин Юрий Петрович
  • Зенков Дмитрий Иванович
  • Ткачук Анатолий Александрович
  • Шамро Олег Алексеевич
  • Нижегородцев Владимир Иванович
RU2317637C1
Способ герметизации дефектов 1990
  • Шарафутдинов Анас Миргасимович
SU1764920A1

RU 2 580 101 C1

Авторы

Карпенко Сергей Иванович

Забелин Евгений Васильевич

Пашарин Владимир Игоревич

Столяров Алексей Михайлович

Даты

2016-04-10Публикация

2015-01-19Подача