Изобретение относится к гидроэнергетике и может быть использовано для выработки электроэнергии от движения волн в больших водоемах, морях или океанах.
В литературе известны многочисленные волновые энергетические установки, в том числе пневматические преобразователи Масуда, турбины Уэлса, контурный плот Коккерелля, шлюз Рассела, утка Солтера, триплейт Фарлея и др., использующие различные волновые эффекты и имеющие свои достоинства и недостатки.
Известна, например, «Волновая энергетическая установка» авторов Ахмедова Р.Б. и Лубановского В.И. по изобретению СССР №1208299, МПК F03B 13/20.
Установка содержит плавучий корпус с поршневым компрессором, шток поршня которого соединен с погруженным в воду телом, выполненным в виде поплавка обтекаемой формы, и противовесом, обладающими вместе нулевой плавучестью. При появлении волн корпус с компрессором совершают вертикальные колебания, при этом поршень передает сжатый воздух в преобразовательное устройство.
Недостатками данного устройства являются незначительная вырабатываемая мощность, поскольку используется только часть потенциальной энергии волны при вертикальных колебаниях конструкции, а также сложности с обеспечением ее нулевой плавучести.
Известная «Волновая электростанция» автора Гаршина О.Н. по патенту РФ №2405967, МПК F03В 13/18, преобразующая кинетическую энергию прибойной морской волны.
Установка содержит пустотелые прямые четырехгранные призмы, открытые снизу и сообщающиеся с водной средой, причем в призмах в верхней части выполнены два сквозных продольных окна, образующих всасывающие и нагнетательные магистрали. Призмы объединены в секции, размещаемые между вертикальными щитами, навешанными на ряды вбитых в дно свай, а во внутренних пазах окон установлены впускной и выпускной клапаны.
В собранном виде данная конструкция представляет собой пирс или волнолом, опирающийся со стороны берега на бетонное основание.
Принцип работы ее заключается в вытеснении или всасывании воздуха при прохождении волны внутри каждой секции. Воздух через клапаны и магистраль поступает на турбину.
Данная волновая электростанция не относится к мобильным станциям и ее мощность будет зависеть от волновой обстановки в данной местности.
К недостаткам данной конструкции следует отнести громоздкость, сложность сооружения и высокую материалоемкость на единицу извлекаемой энергии.
Ближайшим аналогом (прототипом) является «Волновая электростанция» автора Каргаева Л.А. по патенту РФ №2049925, МПК F03B 13/12, F03B 13/22, использующая плавучую платформу с волноприемными камерами.
Данное устройство содержит плавучий корпус, на котором размещены электрогенератор, воздушная турбина и волноприемные камеры с поплавками г-образной формы, установленными с возможностью одностороннего вращения на горизонтальном валу. Момент вращения поплавков при вертикальных перемещениях камер оказывает дополнительное воздействие на вал турбины и добавляет воздействие на нее от сжатого воздуха в волноприемных камерах.
В прототипе не используется кинетическая энергия волны (движение гребня волны), имеющая больший энергетический потенциал по сравнению с ее потенциальной энергией, содержащейся в амплитуде волны.
Кроме того, данное устройство также достаточно сложное в реализации за счет большого количества дополнительных механизмов и согласующих вращение вала турбины узлов (повышающий редуктор, обгонные муфты, храмовой механизм и др.).
Задачей изобретения является создание мобильного, простого по конструкции устройства, максимально использующего одновременно и кинетическую и потенциальную энергию волн.
Указанная задача достигается тем, что в мобильной волновой электростанции, содержащей плавающую платформу с размещенной на ней волноприемной камерой, соединенной с воздуховодом и воздушной турбиной, подключенной к электрогенератору, согласно изобретению, волноприемная камера выполнена в виде v-образного протяженного вдоль фронта волны тоннеля с боковыми стенками, наклонной нижней плоскостью на его входе и с подпружиненным клапаном на выходе узкой части тоннеля, соединенного с воздуховодом, подключенным к хранилищу сжатого воздуха, выход которого соединен с воздушной турбиной, причем платформа содержит полости, заполняемые водой для создания регулируемой плавучести, и она соединена с опорой посредством гибких тросов.
Кроме того, в мобильной волновой электростанции хранилище сжатого воздуха выполнено в виде эластичных надуваемых баллонов, закрепленных на дне водоема.
Кроме того, в мобильной волновой электростанции волноприемная камера оснащена на входе верхней наклонной плоскостью-козырьком с изменяющимся углом наклона и его длиной под профиль крутизны входящей в тоннель волны.
Потенциальная энергия волны состоит из энергии положения гребня и ложбины волны, а также из энергии ее гидростатического давления. Кинетическая энергия волны заключает в себя сложные горизонтальные перемещения гребня волны и энергию циркуляционного движения масс воды в волне.
Технический результат предлагаемого решения заключается в следующем:
- увеличена эффективность устройства за счет размещения на плавающей платформе v-образного протяженного вдоль фронта волны тоннеля, воспринимающего как кинетическую, так и потенциальную энергию волны, перемещающейся внутри тоннеля от его входной широкой до зауженной части тоннеля;
- увеличена эффективность устройства за счет использования наклонной нижней плоскости и боковых стенок тоннеля, поднимающих амплитуду мелких волн и расширяющих диапазон использования устройства;
- увеличена эффективность устройства за счет регулирования положения плавающей платформы путем заполнения ее полостей забортной водой, что дает возможность приспособить устройство к текущей волновой обстановке;
- увеличена эффективность устройства за счет использования эластичного надуваемого хранилища сжатого воздуха, размещаемого на дне водоема;
- увеличена эффективность за счет размещения плавучей платформы на тросах за опорой по направлению движения гребня волн, что позволяет устройству самоориентироваться на фронт движения волн.
Таким образом, изобретение предлагает максимальную адаптацию к интенсивности морского волнения.
Предложенное изобретение может найти применение в качестве универсального мобильного энергоагрегата, использующего энергию волн.
Волновая электростанция изображена на чертежах: фиг. 1 - вид сверху, на фиг. 2 - разрез по А-А на фиг. 1.
Волновая электростанция содержит платформу 1 с регулируемой плавучестью за счет заполнения водой ее полостей 2, волноприемную камеру, состоящую из наклонной нижней плоскости 3, боковых стенок 4 и v-образного тоннеля 5, на выходе зауженной части которого закреплен подпружиненный клапан 6 внутри воздуховода 7, соединенного с подводным хранилищем 8 сжатого воздуха, а выход последнего подключен к воздушной турбине 9, нагруженной на электрогенератор 10. Платформа крепится канатами 11 за опору 12 по направлению движения волн V (показано сплошными стрелками), а вход тоннеля оснащен верхней наклонной плоскостью-козырьком 13, угол наклона которого и его длина могут изменяться под профиль крутизны входящей в тоннель волны и ограничивать ее амплитуду.
Хранилище сжатого воздуха крепится ко дну или оснащается дополнительными грузами. Оно выполнено в виде надуваемых эластичных баллонов, давление в которых возможно поддерживать на более высоких параметрах за счет давления верхних слоев воды, поэтому его целесообразно располагать на больших глубинах (Павел Котляр. Канадцы придумали, как хранить излишки энергии под водой [Электронный ресурс]: www.gazeta.ru/science/2014/07/12.shtin1).
Волновая электростанция работает следующим образом. Путем заполнения водой полостей 2 плавающей платформы 1 создается оптимальное ее подтопление (погружение) и наклон под действующую в настоящий период волновую обстановку. Это может осуществляться, например, дистанционно управляемыми электроклапанами, запускающими воду в полости, и вытеснение ее сжатым воздухом (не показано на чертеже).
Волны воды V входят в v-образный тоннель 5 и, двигаясь по нему, вода с огромной скоростью сжимает воздух, который, преодолевая сопротивление подпружиненного клапана 6, поступает через воздуховод 7 в подводное хранилище 8 сжатого воздуха. Для более надежного захватывания водой воздуха в тоннеле вход последнего незначительно закруглен по отношению к прямой линии движения фронта волны. Тоннель целесообразно разбить вертикальными перегородками на секции, не доходящие до конца его зауженной части, чтобы обеспечить перетекание воздуха между секциями для его подачи через клапан 6 в воздуховод 7 (не показано на чертеже). Воздушная турбина 9 и генератор 10 могут располагаться на платформе 1 или на берегу, причем хранилище 8 и турбина 9 также связаны воздуховодом. Если генератор расположен на платформе, то электроэнергия для береговых потребителей подается по кабелю.
Наклонная нижняя, примерно под углом 30°, плоскость 3 позволяет поднять по амплитуде волны малых размеров, что увеличивает диапазон используемых волн и повышает эффективность работы устройства.
Аналогично, боковые стенки 4 волноприемной камеры собирают волны за пределами ширины платформы и при их дальнейшем движении к сужающему конусу боковых стенок амплитуда волн возрастает, что также увеличивает эффективность предлагаемого устройства.
После прохождения гребня волны вода, попавшая в v-образный тоннель, выливается (время прохождения ложбины волны), в тоннель поступает воздух (показано пунктирной стрелкой) и работа устройства циклично повторяется.
Волны имеют разный профиль: как близкий к синусоидальному, так и с крутым передним фронтом. Регулируя длину и угол наклона верхней плоскости-козырька 13 представляется возможность подстраиваться под профиль крутизны входящей в тоннель волны и ограничить ее амплитуду.
На лопасти-козырьке 13 или при входе волны в тоннель 5 может быть установлена вертикальная труба (не показано на чертеже) для поступления воздуха, содержащего меньшее количество водяных брызг, попадающих вместе с нагнетаемым воздухом в водуховод 7.
Крепление платформы 1 канатами 77 к опоре 12 позволяет самоориентироваться устройству на направление движения волн при их незначительном отклонении от установленного уровня. Если направление движения волн изменилось существенно, установку платформы на новое направление производят поворотом опоры 12.
В качестве подводных хранилищ сжатого воздуха может быть использовано различное резервуарное оборудование, в том числе эластичные газгольдеры ЗОА «Пензэнерго» (Разгольдеры для биогаза, биогазовые установки. ЗАО «Пензенский завод нефтегазового оборудования» [Электронный ресурс]: www.//penznego.ru) и австрийской фирмы Sattler Textilwerkt (Мембранные газгольдеры для биогаза. - Аква-терм, №5 (21), 2004, с. 98).
Волновые энергетические установки классифицируют также по числу степеней преобразования энергии: одно-, двух-, трех-, четырех- и пятиступенчатые системы. Одноступенчатая система непосредственно преобразует волновую энергию в электрическую, например, используя пьезоэлектрический эффект.
Чем меньше ступеней преобразования, тем выше КПД за счет уменьшения дополнительных потерь (известно, что суммарный КПД сложных систем определяется перемножением КПД каждой ступени преобразования).
Предлагаемая волновая электростанция, имеющая две ступени преобразования, будет отличаться высоким КПД.
Кроме того, сравнительно простая конструкция обеспечивает минимальную материалоемкость на единицу извлекаемой энергии.
Также техническим преимуществом предлагаемого устройства является его мобильность. Электростанция может быть отбуксирована в зону, где возникла необходимость в обеспечении дополнительной электроэнергии, при этом в качестве опоры 12 может использоваться судно или другая заякоренная конструкция.
название | год | авторы | номер документа |
---|---|---|---|
МОБИЛЬНАЯ ВОЛНОВАЯ ЭНЕРГОУСТАНОВКА | 2021 |
|
RU2783167C1 |
ВОЛНОВАЯ ЭНЕРГОУСТАНОВКА, ИСПОЛЬЗУЮЩАЯ РЕВЕРСИВНОЕ ТЕЧЕНИЕ ПОТОКОВ ВОДЫ | 2022 |
|
RU2782949C1 |
ПЛАВУЧАЯ ВОЛНОВАЯ ЭЛЕКТРОСТАНЦИЯ | 2019 |
|
RU2729565C1 |
УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ ВОЛНЫ | 2022 |
|
RU2796116C1 |
ВОЛНОВАЯ ЭЛЕКТРОСТАНЦИЯ | 1992 |
|
RU2049925C1 |
ВОЛНОВАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 1990 |
|
RU2025573C1 |
ВОЛНОВАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 1994 |
|
RU2078987C1 |
ВОЛНОВАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 1991 |
|
RU2049928C1 |
Приливная ГЭС | 2018 |
|
RU2710135C1 |
УНИВЕРСАЛЬНАЯ МОРСКАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 2007 |
|
RU2347939C2 |
Изобретение относится к гидроэнергетике и может быть использовано для выработки электроэнергии от движения волн в больших водоемах, морях или океанах. Мобильная волновая электростанция содержит плавающую платформу с размещенной на ней волноприемной камерой, соединенной с воздуховодом и воздушной турбиной, подключенной к электрогенератору. Волноприемная камера выполнена в виде v-образного протяженного вдоль фронта волны тоннеля с боковыми стенками, наклонной нижней плоскостью на его входе и с подпружиненным клапаном на выходе узкой части тоннеля, соединенного с воздуховодом, подключенным к хранилищу сжатого воздуха. Выход хранилища соединен с воздушной турбиной. Платформа содержит полости, заполняемые водой для создания регулируемой плавучести. Платформа соединена с опорой посредством гибких тросов. Изобретение направлено на создание мобильного, простого по конструкции устройства, максимально использующего энергию волн. 2 з.п. ф-лы, 2 ил.
1. Мобильная волновая электростанция, содержащая плавающую платформу с размещенной на ней волноприемной камерой, соединенной с воздуховодом и воздушной турбиной, подключенной к электрогенератору, отличающаяся тем, что волноприемная камера выполнена в виде v-образного протяженного вдоль фронта волны тоннеля с боковыми стенками, наклонной нижней плоскостью на его входе и с подпружиненным клапаном на выходе узкой части тоннеля, соединенного с воздуховодом, подключенным к хранилищу сжатого воздуха, выход которого соединен с воздушной турбиной, причем платформа содержит полости, заполняемые водой для создания регулируемой плавучести, и она соединена с опорой посредством гибких тросов.
2. Мобильная волновая электростанция по п. 1, отличающаяся тем, что хранилище сжатого воздуха выполнено в виде эластичных надуваемых баллонов, закрепленных на дне водоема.
3. Мобильная волновая электростанция по п. 1, отличающаяся тем, что волноприемная камера оснащена на входе верхней наклонной плоскостью-козырьком с изменяющимся углом наклона и его длиной под профиль крутизны входящей в тоннель волны.
ВОЛНОВАЯ ЭЛЕКТРОСТАНЦИЯ | 1992 |
|
RU2049925C1 |
ВОЛНОВАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 1991 |
|
RU2023905C1 |
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем | 1924 |
|
SU2012A1 |
СПОСОБ ЛЕЧЕНИЯ ВАЛЬГУСНОЙ ДЕФОРМАЦИИ ПЕРВОГО ПАЛЬЦА СТОПЫ И ВАРУСНОЙ ДЕФОРМАЦИИ ПЕРВОЙ ПЛЮСНЕВОЙ КОСТИ | 2006 |
|
RU2330625C1 |
Многоступенчатая активно-реактивная турбина | 1924 |
|
SU2013A1 |
Авторы
Даты
2016-04-10—Публикация
2015-03-13—Подача