СПОСОБ ИСПЫТАНИЯ ОБТЕКАТЕЛЕЙ ИЗ ХРУПКИХ МАТЕРИАЛОВ Российский патент 2016 года по МПК G01N3/12 G01M99/00 B64C1/14 

Описание патента на изобретение RU2580265C1

Изобретение относится к технике наземных испытаний элементов летательных аппаратов.

В настоящее время для 100% контроля обтекателей ракет из хрупких материалов, например из керамики, применяется опрессовка обтекателя изнутри газом или жидкостью при давлениях, эквивалентной 60% силовой нагрузки. Способ достаточно прост, но имеет существенный недостаток - мало информативен. По этой причине практически невозможно прогнозировать поведение обтекателя после 60% силовой нагрузки. Кроме того, при разрушении конструкции обтекатель разлетается на куски и невозможно восстановить картину разрушения для определения координат начала разрушения.

Частично, перечисленные недостатки устранены в способе, описанном в источнике информации (Фокин В.И. Совершенствование методов и средств наземных статических испытаний конструкций головных обтекателей летательных аппаратов. Автореферат диссертации на соискание ученой степени кандидата технических наук, Самара - 2009, с. 1-16).

Способ, описанный в работе Фокина В.И., заключается в создании избыточного давления во внутренней полости керамического обтекателя с синхронной регистрацией измерения зазора между торцом керамической оболочки и кольцом металлического шпангоута в процессе нагружения. В данном способе в основном оценивается прочность узла соединения.

Основным недостатком способа является то, что при разрушении оболочки из хрупкого материала в результате остается кучка осколков, из которых трудно, а в ряде случаев невозможно собрать оболочку, чтобы восстановить рисунок распространения трещин. Это важно при анализе результатов испытаний.

Наиболее близким по технической сущности является способ, описанный в патенте №2466371. В данном способе увеличена эффективность контроля узла соединения за счет контроля механических свойств непосредственно на натурном обтекателе, однако прототип имеет тот же недостаток, что и предыдущие аналоги - при разрушении испытуемого обтекателя теряется часть информации из-за разлета осколков оболочки. Кроме того, из-за случайного взаимодействия осколков обтекателя при разрушении с защитным кожухом к последнему предъявляются большие требования по прочности. Обычно, испытания на опрессовку керамических обтекателей проводят в бронекамере.

Технический результат заявляемого изобретения заключается в уменьшении энергии разлета осколков при разрушении и автоматической сборке оболочки после разрушения для восстановления рисунка распространения трещин.

Указанный технический результат достигается тем, что в известном способе испытания керамических обтекателей летательных аппаратов на разрушение, включающем создание избыточного давления во внутренней полости обтекателя, отличающемся тем, что предварительно на наружной поверхности обтекателя монтируют упругий перфорированный прозрачный чехол, на внутреннюю поверхность которого нанесен липкий слой, обеспечивающий возможность фиксации осколков обтекателя при его разрушении, и перфорированный защитный кожух, при этом пространство между наружной поверхностью упомянутого чехла и внутренней поверхностью кожуха заполняют резиновым материалом, например, в виде резиновых шариков.

При разрушении оболочки из хрупкого материала большая часть потенциальной энергии сжатого газа преобразовывается в кинетическую энергию осколков. Полную кинетическую энергию i-го осколка можно выразить формулой

где Si - площадь осколка, на котором действует давление газа; P(h) - давление газа на осколок в интервале от 0 до h; Е - модуль упругости демпфирующего материала между наружной поверхностью обтекателя и стенкой защитного кожуха; h - путь, пройденный осколком до полного преобразования потенциальной энергии сжатого газа в кинетическую.

При отсутствии демпфирующего материала между наружной поверхностью обтекателя и стенкой защитного кожуха формула (1) принимает вид

В этом случае вся потенциальная энергия сжатого газа преобразовывается в кинетическую энергию i-го осколка.

Так как величина площади взаимодействия осколка с защитным кожухом имеет случайный характер, то требования к прочности последнего велики. По этой причине такие испытания проводят в бронекамерах. Кроме того, при взаимодействии керамических осколков с защитным кожухом они претерпевают дополнительные разрушения, которые не дают возможность восстановить исходную картину разрушения.

Из формулы (1) видно, что если пространство между наружной поверхностью и защитным кожухом заполнить демпфирующим (резиновым) материалом, то можно снизить кинетическую энергию осколков. Упругие свойства демпфирующего материала могут быть выбраны из условия

где Н - расстояние между наружной поверхностью обтекателя и защитным кожухом; d - перемещение наружной поверхности оболочки при максимальном давлении до разрушения обтекателя.

Подбором свойств демпфирующего слоя можно довести кинетическую энергию осколков при разрушении до нуля. Это дает возможность снизить требования к прочности защитного кожуха, так как защитный кожух при разрушении обтекателя взаимодействует только с демпфирующим слоем.

Для того чтобы сохранить картину распространения трещин в керамической оболочке с целью выявления начала разрушения, внутренняя часть упругого прозрачного чехла выполняется липкой, например из двустороннего скотча. В этом случае, при разрушении керамической оболочки, осколки, контактируя с липким слоем, фиксируются, а взаимодействуя с демпфирующей средой, возвращаются назад в исходное положение, что дает возможность восстановить первоначальную картину разрушения.

На фигуре представлена сборка обтекателя по предложенному способу. Цифрой 1 обозначен обтекатель, на котором монтируется упругий чехол 2 с липким слоем 3 на внутренней поверхности, пространство между наружной поверхностью обтекателя 1 и защитным кожухом 5 заполняется упругим (демпфирующим) материалом 4. Для герметизации внутренней полости керамического обтекателя 7 применяется заглушка 6.

Сборка работает следующим образом. При разрушении обтекателя 1 часть сжатого газа (при расширении) действует на осколки, а часть через отверстия перфорации в упругом чехле и отверстия 8 в защитном кожухе выходит в атмосферу. Осколки под действием сжатого газа взаимодействуют с демпфирующим материалом 4 через упругий чехол 2 с нанесенным липким слоем 3 и отдают часть своей кинетической энергии демпфирующему материалу 4. Так как осколки фиксированы липким слоем к упругому чехлу 2, то при уменьшении давления чехол вернется в исходное состояние вместе с осколками. Тем самым происходит восстановление первичной картины распространения трещин при разрушении обтекателя. После снятия демпфирующего материала 4 через прозрачный упругий чехол 2 первичная картина разрушения проявляется.

Предлагаемый способ может найти широкое применение при проведении опрессовки обтекателей ракет из керамических материалов.

Похожие патенты RU2580265C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ УДЕРЖАНИЯ ОТОРВАВШИХСЯ ЛОПАТОК В ДВУХКОНТУРНОМ ТУРБОРЕАКТИВНОМ ДВИГАТЕЛЕ 2009
  • Соколовский Михаил Иванович
  • Саков Юрий Львович
  • Мозеров Борис Георгиевич
  • Каримов Владислав Закирович
  • Радионов Михаил Владимирович
  • Куртеев Владимир Аркадьевич
  • Ошев Николай Александрович
  • Кузьмин Александр Николаевич
  • Иноземцев Александр Александрович
  • Кокшаров Николай Леонидович
  • Гладкий Иван Леонидович
  • Харин Сергей Александрович
  • Климов Валерий Николаевич
  • Бова Александр Валентинович
RU2433281C2
Способ теплопрочностных испытаний керамических обтекателей 2018
  • Райлян Василий Семёнович
  • Фокин Василий Иванович
  • Алексеев Дмитрий Владимирович
  • Афтаев Вадим Владимирович
  • Иванов Вячеслав Васильевич
RU2697481C1
АНТЕННЫЙ ОБТЕКАТЕЛЬ 2006
  • Богацкий Владимир Григорьевич
  • Викулин Владимир Васильевич
  • Суздальцев Евгений Иванович
  • Федин Владимир Ильич
  • Харитонов Дмитрий Викторович
RU2313162C9
МЕТАЛЛОБЕТОННЫЙ КОНТЕЙНЕР ДЛЯ ТРАНСПОРТИРОВКИ И/ИЛИ ХРАНЕНИЯ ОТРАБОТАВШИХ СБОРОК ТВЭЛ ЯДЕРНЫХ РЕАКТОРОВ 2004
  • Воронцов Владимир Владимирович
  • Гуськов Владимир Дмитриевич
  • Зайцев Борис Иванович
  • Коротков Геннадий Васильевич
  • Матвеев Анатолий Андреевич
  • Ходасевич Константин Борисович
  • Моренко Александр Иванович
  • Балдов Александр Николаевич
RU2279725C1
СПОСОБ ТЕПЛОВЫХ ИСПЫТАНИЙ ОБТЕКАТЕЛЕЙ РАКЕТ ИЗ НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ 2015
  • Райлян Василий Семёнович
  • Русин Михаил Юрьевич
  • Резник Сергей Васильевич
  • Алексеев Дмитрий Владимирович
  • Фокин Василий Иванович
RU2571442C1
МЕТАЛЛОБЕТОННЫЙ КОНТЕЙНЕР ДЛЯ ТРАНСПОРТИРОВКИ И/ИЛИ ХРАНЕНИЯ ОТРАБОТАВШИХ СБОРОК ТВЭЛ ЯДЕРНЫХ РЕАКТОРОВ 2005
  • Амелин Альберт Михайлович
  • Воронцов Владимир Владимирович
  • Гуськов Владимир Дмитриевич
  • Зайцев Борис Иванович
  • Матвеев Анатолий Андреевич
  • Рождественский Дмитрий Вадимович
  • Ходасевич Константин Борисович
RU2293383C1
Способ испытания керамических оболочек 2018
  • Райлян Василий Семёнович
  • Русин Михаил Юрьевич
  • Алексеев Дмитрий Владимирович
  • Тесленко Елена Анатольевна
  • Сандимиров Александр Владимирович
RU2697410C1
ПУСКОВАЯ УСТАНОВКА ДЛЯ ОРУЖИЯ ТИПА ТОРПЕДЫ 2011
  • Потапов Владимир Фёдорович
  • Бородин Василий Максимович
  • Бубешко Михаил Евстафьевич
  • Козырев Юрий Александрович
RU2502935C2
СПОСОБ СУШКИ КРУПНОГАБАРИТНЫХ СЛОЖНОПРОФИЛЬНЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ 2005
  • Суздальцев Евгений Иванович
  • Харитонов Дмитрий Викторович
  • Зайчук Татьяна Владимировна
  • Дмитриев Артем Валерьевич
  • Суслова Маргарита Александровна
  • Ипатова Наталья Ивановна
  • Каменская Татьяна Петровна
RU2298744C1
ТРАНСПОРТНЫЙ УПАКОВОЧНЫЙ КОМПЛЕКТ ДЛЯ ТРАНСПОРТИРОВАНИЯ РАДИОАКТИВНЫХ МАТЕРИАЛОВ 2012
  • Баринков Олег Павлович
  • Ивашкин Александр Игоревич
  • Чирков Константин Владимирович
RU2518910C2

Иллюстрации к изобретению RU 2 580 265 C1

Реферат патента 2016 года СПОСОБ ИСПЫТАНИЯ ОБТЕКАТЕЛЕЙ ИЗ ХРУПКИХ МАТЕРИАЛОВ

Изобретение относится к испытанию керамических обтекателей летательных аппаратов на разрушение. Способ включает создание избыточного давления во внутренней полости обтекателя. Предварительно на наружной поверхности обтекателя монтируют упругий перфорированный прозрачный чехол, на внутреннюю поверхность которого нанесен липкий слой, обеспечивающий возможность фиксации осколков обтекателя при его разрушении, и перфорированный защитный кожух, при этом пространство между наружной поверхностью упомянутого чехла и внутренней поверхностью кожуха заполняют резиновым материалом. Липкий слой на внутреннюю поверхность упругого чехла может быть нанесен двусторонним скотчем. Может быть использован резиновый материал в виде шариков. Обеспечивается возможность восстановления картины разрушения обтекателя при проведении опрессовки. 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 580 265 C1

1. Способ испытания керамических обтекателей летательных аппаратов на разрушение, включающий создание избыточного давления во внутренней полости обтекателя, отличающийся тем, что предварительно на наружной поверхности обтекателя монтируют упругий перфорированный прозрачный чехол, на внутреннюю поверхность которого нанесен липкий слой, обеспечивающий возможность фиксации осколков обтекателя при его разрушении, и перфорированный защитный кожух, при этом пространство между наружной поверхностью упомянутого чехла и внутренней поверхностью кожуха заполняют резиновым материалом.

2. Способ по п.1, отличающийся тем, что липкий слой на внутреннюю поверхность упругого чехла наносят двусторонним скотчем.

3. Способ по п.1, отличающийся тем, что используют резиновый материал в виде шариков.

Документы, цитированные в отчете о поиске Патент 2016 года RU2580265C1

СПОСОБ КОНТРОЛЯ УЗЛА СОЕДИНЕНИЯ КЕРАМИЧЕСКОГО ОБТЕКАТЕЛЯ 2011
  • Райлян Василий Семенович
  • Фокин Василий Иванович
  • Русин Михаил Юрьевич
RU2466371C2
ФОКИН В.И., Совершенствование методов и средств наземных статических испытаний конструкций головных обтекателей летательных аппаратов
Автореферат диссертации на соискание ученой степени кандидата технических наук, Самара, 2009, с.1-16
СТЕНД ДЛЯ ИСПЫТАНИЙ НА ПРОЧНОСТЬ ГОЛОВНОГО ОБТЕКАТЕЛЯ 2004
  • Подзоров Валерий Николаевич
  • Европейцев Александр Анатольевич
  • Мажирин Василий Федорович
  • Качкин Анатолий Александрович
RU2293956C2
СПОСОБ ВОЗДЕЛЫВАНИЯ ЖЕНЬШЕНЯ 2000
  • Кузнецова Е.И.
  • Силков М.В.
RU2177220C1

RU 2 580 265 C1

Авторы

Райлян Василий Семёнович

Фокин Василий Иванович

Неповинных Виктор Иванович

Малахов Алексей Владимирович

Алексеев Дмитрий Владимирович

Даты

2016-04-10Публикация

2014-09-30Подача