ПЛАЗМЕННАЯ АНТЕННА Российский патент 2016 года по МПК H01Q1/00 H05H1/00 

Описание патента на изобретение RU2582491C1

Изобретение относится к области антенной техники и может быть использовано для изучения радиоволн в длинноволновом диапазоне с борта космического аппарата в ионосфере.

Известна лазерная антенна (аналог), в которой излучающим элементом является ионизированный столб воздуха, создаваемый лазерным лучом и аналогичный излучающему металлическому стержню. Лазерная антенна состоит из лазера, который предназначен для создания лазерного луча, фокусирующего устройства и цепи для соединения источника сигналов с основанием ионизированного столба воздуха [1. США, патент №3404403, 343-700, 1968 г.].

Недостатком известной лазерной антенны является высокий уровень боковых лепестков диаграммы направленности.

Наиболее близкая по технической сущности и достигаемому техническому результату (прототип) известна плазменная приемопередающая антенна, представляющая собой излучающий элемент в виде плазменного образования, которое размещено внутри анода плазменного генератора. Указанный электрод выполнен в виде волновода цилиндрической формы. Источник информационных сигналов (радиоволн) через устройство развязки подключен к анодному выходу плазменного генератора [2. Россия, патент №2255394, H01Q 1/00, 2005].

Недостатком известной плазменной приемопередающей антенны является высокий уровень боковых лепестков диаграммы направленности.

Технической задачей данного изобретения является снижение уровня боковых лепестков диаграммы направленности антенны.

Технический результат достигается за счет того, что в известной плазменной антенне, содержащей плазменный генератор, формирующий плазменное образование, и первичный источник радиоволн, анод плазменного генератора выполнен в виде конического диффузора, состоящего из корпуса и конической вставки, диэлектрически соединенной с подводящим патрубком, поверхность которого выполнена перфорированной, кроме того, первичный источник радиоволн установлен на оси антенны на расстоянии от точки генерации плазменного образования, где γ=2,8…3,0 - постоянная величина, k - волновое число, b - максимальное расстояние от плазменного генератора до границы области с критической концентрацией электронов, θк - угол между осью антенны и направлением распространения плазмы с максимальной скоростью.

Известно [3. Колычев С.Α., Ярыгин А.П. Плазменные антенны космического базирования с управляемыми характеристиками // Радиотехника. 2006, №6. С. 74-77], что при взаимодействии радиоволн с плазменным образованием проявляются две области: с концентрацией электронов N выше и ниже критической. Граница между этими областями определяется соотношением длины радиоволны λ и критической концентрацией электронов в плазменном образовании . При этом область плазменного образования с концентрацией электронов N выше критической обладает экранирующим эффектом - диэлектрическая проницаемость, при Ν=Νkp, ε=0), то есть происходит отражение радиоволн, а в области плазменного образования с концентрацией электронов N ниже критической происходит изменение направления распространения радиоволн в сторону с более низкой концентрацией электронов.

Сущность изобретения поясняется фиг. 1 и фиг. 2, на которых представлены сечения анода плазменного генератора и неоднородного плазменного образования, формируемого им. На фиг. 1 обозначено: 1 - корпус анода, 2 - коническая вставка, 3 - подводящий патрубок, 4 - зазор между корпусом анода и конической вставкой.

На фиг. 2 обозначено: 5 - плазменный генератор; 6 - область неоднородного плазменного образования с концентрацией электронов N выше критической Nkp; 7 - область неоднородного плазменного образования с концентрацией электронов ниже критической; b - максимальное расстояние от плазменного генератора до границы области с критической концентрацией электронов, θк - угол между осью антенны и направлением распространения плазмы с максимальной скоростью; 8 - первичный источник радиоволн, установленный на оси антенны ΟΖ на расстоянии R от плазменного генератора О; кроме того, схематично изображена геометрия лучей, по которым распространяется энергия первичного источника радиоволн.

Выполнение анода в виде конического диффузора, состоящего из корпуса 1 и конической вставки 2, обеспечивает формирование плазменного образования воронкообразной формы (фиг. 2). Направление распространения плазмы с максимальной скоростью будет определяться формой зазора 4 между корпусом 1 и конической вставкой 2. Кроме того, очень незначительное количество плазмы будет «затекать» на большее основание конической вставки 2. Поэтому плазменное образование будет иметь воронкообразную форму. Неоднородность плазменного образования (наличие областей с разной концентрацией электронов) обусловлена тем, что электронная концентрация вне области непосредственной генерации плазмы уменьшается обратно пропорционально квадрату расстояния от этой области (как для любого потока материальных объектов из локализованного источника).

На оси антенны плазма отсутствует или имеет минимальную концентрацию. С увеличением угла отклонения от оси антенны (на фиксированных расстояниях от области генерации плазмы) концентрация возрастает, достигая своего максимального значения при угле отклонения θк, соответствующем максимальной скорости истечения плазмы из плазменного генератора.

Подводящий патрубок 3 выполняет две функции: распыление через перфорированную поверхность газообразного легко ионизированного вещества и крепление конической вставки 2 внутри корпуса анода 1.

Внутри неоднородного плазменного образования воронкообразной формы на оси антенны ΟΖ размещают первичный источник радиоволн 8 на заданном расстоянии R от точки генерации плазмы в фокусе плазменной антенны.

Внутри «неоднородной плазменной воронки» ось антенны ΟΖ оказывается окруженной средой с большей, чем на самой оси, оптической плотностью. В результате излучение первичного источника будет отклоняться в направлении оси антенны ОΖ (явление рефракции), что позволяет получить практически однолепестковую диаграмму направленности антенны с очень низким уровнем боковых лепестков, в предельном случае без боковых лепестков.

Изобретение может быть реализовано с помощью известных антенн и устройств для генерации плазмы, выпускаемых промышленностью.

В качестве первичного источника электромагнитных волн могут применяться различные облучатели апертурных антенн [Д.И. Воскресенский, В.Л. Гостюхин, В.М. Максимов, Л.И. Пономарев. Устройства СВЧ и антенны. Под ред. Д.И. Воскресенского. - М.: Радиотехника, 2006, стр. 280]. Плазменные генераторы описаны в патенте [Россия, патент №2255394, H01Q 1/00, 2005].

Плазменная антенна работает следующим образом. Через подводящий патрубок в полость корпуса анода вводятся пары легкоионизирующегося вещества, которое ионизируется, за счет разности потенциалов между анодом и катодом. Форма плазменного образования формируется, за счет выполнения анода плазменного генератора в виде конического диффузора, состоящего из корпуса 1 и конической вставки 2. Неоднородное плазменное образование воронкообразной формы экранирует распространение радиоволн от первичного источника радиоволн 8 во все направления, кроме направления вдоль оси антенны OZ, и одновременно отклоняет эти радиоволны в направлении вдоль оси антенны. Тем самым достигается указанный в изобретении технический результат.

Похожие патенты RU2582491C1

название год авторы номер документа
Плазменная антенна 2020
  • Гусейн-Заде Намик Гусейнага Оглы
  • Казанцев Сергей Юрьевич
  • Богачев Николай Николаевич
  • Подлесных Сергей Владимирович
  • Камынин Владимир Александрович
  • Шохрин Дмитрий Викторович
RU2736811C1
СПОСОБ ФУНКЦИОНАЛЬНОГО ПОРАЖЕНИЯ ЭЛЕКТРОННОГО ОБОРУДОВАНИЯ ЭЛЕКТРОМАГНИТНЫМ БОЕПРИПАСОМ 2020
  • Лаврентьев Александр Петрович
RU2748193C1
Волновой плазменный источник электронов 2021
  • Шумейко Андрей Иванович
RU2757210C1
Способ определения коэффициента амбиполярной диффузии в нижней ионосфере Земли 2018
  • Бахметьева Наталия Владимировна
  • Григорьев Геннадий Иванович
  • Толмачева Ариадна Викторовна
RU2696015C1
ИМПУЛЬСНЫЙ ГЕНЕРАТОР ТЕРМОЯДЕРНЫХ НЕЙТРОНОВ 2018
  • Вовченко Евгений Дмитриевич
  • Диденко Андрей Николаевич
  • Козловский Константин Иванович
  • Ращиков Владимир Иванович
  • Шатохин Вадим Леонидович
  • Шиканов Александр Евгеньевич
RU2683963C1
Способ работы плазменного источника ионов и плазменный источник ионов 2015
  • Тимеркаев Борис Ахунович
  • Исрафилов Данис Ирекович
RU2620603C2
СПОСОБ УПРАВЛЕНИЯ РАСПРОСТРАНЕНИЕМ КОРОТКИХ РАДИОВОЛН В ИОНОСФЕРНОМ ВОЛНОВОДЕ 2009
  • Урядов Валерий Павлович
RU2413363C1
ПАРАМЕТРИЧЕСКИЙ СИНХРОТРОННЫЙ ПРЕОБРАЗОВАТЕЛЬ 1999
  • Титов А.А.
  • Ляпин Г.С.
RU2165671C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОВЫШЕНИЯ ЛАТЕРАЛЬНОЙ ОДНОРОДНОСТИ И ПЛОТНОСТИ НИЗКОТЕМПЕРАТУРНОЙ ПЛАЗМЫ В ШИРОКОАПЕРТУРНЫХ ТЕХНОЛОГИЧЕСКИХ РЕАКТОРАХ МИКРОЭЛЕКТРОНИКИ 2021
  • Аверкин Сергей Николаевич
  • Антипов Александр Павлович
  • Лукичев Владимир Федорович
  • Мяконьких Андрей Валерьевич
  • Руденко Константин Васильевич
  • Рылов Алексей Анатольевич
  • Семин Юрий Федорович
RU2771009C1
СПОСОБ СОЗДАНИЯ ОДНОРОДНОЙ ПЛАЗМЫ С РАБОЧЕЙ ЗОНОЙ БОЛЬШОЙ ПЛОЩАДИ НА ОСНОВЕ РАЗРЯДА В ВЧ-СВЧ ДИАПАЗОНАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 1996
  • Вологиров Али Гемиранович
  • Двинин Сергей Александрович
  • Слепцов Владимир Владимирович
RU2124248C1

Иллюстрации к изобретению RU 2 582 491 C1

Реферат патента 2016 года ПЛАЗМЕННАЯ АНТЕННА

Изобретение относится к антенной технике. Плазменная антенна содержит плазменный генератор, формирующий плазменное образование, и первичный источник электромагнитных волн, при этом анод плазменного генератора выполнен в виде конического диффузора, состоящего из корпуса и конической вставки, диэлектрически соединенной с подводящим патрубком, поверхность которого выполнена перфорированной, кроме того, первичный источник радиоволн установлен на оси антенны на расстоянии от точки генерации плазменного образования, где γ=2,8…3,0 - постоянная величина, k - волновое число, b - максимальное расстояние от плазменного генератора до границы области с критической концентрацией электронов, θк - угол между осью антенны и направлением распространения плазмы с максимальной скоростью. Технический результат заключается в обеспечении возможности снижения уровня боковых лепестков диаграммы направленности. 2 ил.

Формула изобретения RU 2 582 491 C1

Плазменная антенна, содержащая плазменный генератор, формирующий плазменное образование, и первичный источник радиоволн, отличающаяся тем, что анод плазменного генератора выполнен в виде конического диффузора, состоящего из корпуса и конической вставки, диэлектрически соединенной с подводящим патрубком, поверхность которого выполнена перфорированной, а первичный источник радиоволн установлен на оси антенны на расстоянии R = γ k b θ к от плазменного генератора, где γ=2,8…3,0 - постоянная величина, k - волновое число, b - максимальное расстояние от плазменного генератора до границы области с критической концентрацией электронов, θк - угол между осью антенны и направлением распространения плазмы с максимальной скоростью.

Документы, цитированные в отчете о поиске Патент 2016 года RU2582491C1

ПЛАЗМЕННАЯ ПРИЕМОПЕРЕДАЮЩАЯ АНТЕННА 2003
  • Гришин В.А.
  • Пащина А.С.
  • Николаева В.И.
RU2255394C2
US 20080303744 A1, 11.12.2008
СПОСОБ СОЗДАНИЯ ПЛАЗМЕННЫХ АНТЕНН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1983
  • Марков Г.А.
  • Попова Л.Л.
  • Трахтенгерц В.Ю.
  • Чугунов Ю.В.
RU1304694C
US 20090224610 A1, 10.09.2009.

RU 2 582 491 C1

Авторы

Беляев Виктор Вячеславович

Ярыгин Анатолий Петрович

Колычев Сергей Анатольевич

Даты

2016-04-27Публикация

2014-10-07Подача