ЛИНЕЙНЫЙ ИНДУКЦИОННЫЙ УСКОРИТЕЛЬ Российский патент 2016 года по МПК H05H5/00 

Описание патента на изобретение RU2583039C2

Изобретение относится к ускорительной технике и может быть использовано для создания пучков заряженных частиц наносекундной длительности с высокой частотой следования импульсов.

Известно устройство - линейный индукционный ускоритель (ЛИУ) [Вахрушин Ю.П., Анацкий А.И. Линейные индукционные ускорители. - М.: Атомиздат, 1978, с.170-173], содержащий индукционную систему в виде набора ферромагнитных сердечников, охваченных витками намагничивания. К виткам намагничивания подключены электроды формирующей линии. По оси индукционной системы проходит металлический электрод, соединенный одним выводом с корпусом ускорителя, а другим - с высоковольтным экраном. Между высоковольтным экраном и экраном, установленным на выходном фланце ускорителя, расположен цилиндрический вакуумный изолятор. На один из электродов формирующей линии от первичного источника питания подается импульс зарядного напряжения. Второй электрод формирующей линии заземлен. После срабатывания газовых разрядников, установленных в разрыве любого из электродов, одинарная формирующая линия начинает разряжаться на витки намагничивания сердечников индукционной системы. Ток, протекающий в витках намагничивания, создает в сердечниках изменяющийся во времени магнитный поток, возбуждающий вихревое электрическое поле, ускоряющее заряженные частицы.

Недостатки устройства связаны с использованием газовых разрядников: низкая частота повторения импульсов, низкая стабильность амплитудно-временных параметров импульсов напряжения, малый ресурс работы разрядников из-за высокотемпературной эрозии электродов, необходимость периодической ревизии разрядников.

Наиболее близким техническим решением, выбранным за прототип, является конструкция ЛИУ [Бутаков Л.Д., Васильев В.В., Винтизенко И.И., Фурман Э.Г. Линейные индукционные ускорители на магнитных элементах // ПТЭ, 2001, №5, с.104-109]. Принципиальным отличием от описанной выше конструкции ЛИУ с искровыми газовыми разрядниками является использование магнитного коммутатора формирующей линии. Магнитный коммутатор представляет собой одновитковый дроссель насыщения с сердечником из ферромагнитного материала. Такой коммутатор способен с неограниченным ресурсом коммутировать ток величиной сотни килоампер в наносекундном диапазоне длительностей с частотой в единицы килогерц при высокой стабильности импульсов. Однако, чтобы магнитный коммутатор имел малую индуктивность, зарядку формирующей линии необходимо выполнять за время не более нескольких сотен наносекунд от магнитного импульсного генератора (МИГ), который представляет собой последовательность звеньев сжатия энергии (LC-контуров) с увеличивающейся собственной частотой [Меерович А.А. и др. Магнитные генераторы импульсов // М.: Сов. радио, 1968, 476 с.]. При передаче энергии от одного звена сжатия МИГ к другому происходит компрессия энергии: увеличивается передаваемая мощность за счет сокращения времени процессов заряда и разряда конденсаторов. Это позволяет заряжать формирующую линию от последнего звена сжатия МИГ за время в сотни наносекунд.

Также как и в устройстве аналога в прототипе на магнитных элементах по оси индукционной системы проходит центральный электрод, соединенный одним выводом с корпусом ускорителя, а другим - с высоковольтным профилированным защитным экраном. Между высоковольтным защитным экраном и выходным фланцем ускорителя расположен цилиндрический вакуумный изолятор. В отличие от аналога поверх изолятора уложена однослойная спиральная обмотка, один вывод обмотки подсоединен к защитному экрану, а второй - к импульсному источнику размагничивания. Эта спиральная обмотка выполняет одновременно функции индуктивно-емкостного делителя высоковольтного потенциала по внешней поверхности изолятора, которая находится в вакууме, что повышает его надежность, и элемента цепи размагничивания ферромагнитных сердечников индукционной системы, ограничивающего влияние высокого напряжения нагрузки на источник питания размагничивания.

Недостатком устройства-прототипа является большая длительность фронта импульса в нагрузке, что обусловлено трудностью выполнения с достаточно малой величиной индуктивности обмотки магнитного коммутатора при насыщенном сердечнике. При большой длительности фронта импульса заряженные частицы, участвующие в процессе ускорения, приобретают большой энергетический разброс, снижающий эффективность использования такого устройства для генерации сильноточных пучков большой энергии.

Задачей предлагаемого изобретения является увеличение эффективности использования линейного индукционного ускорителя.

Технический результат заключается в уменьшении длительности фронта импульса тока пучка ускорителя.

Указанный технический результат достигается тем, что линейный индукционный ускоритель, содержащий, как и прототип, индукционную систему в виде набора ферромагнитных сердечников, охваченных витками намагничивания, которые объединены в два общих вывода, центральный электрод, расположенный по оси индукционной системы, один конец электрода заземлен на корпус ускорителя, а второй связан с защитным экраном, одинарную формирующую линию, заземленный и потенциальный электроды которой соединены с выходом магнитного импульсного генератора, состоящего из последовательных контуров сжатия, каждый из которых образован конденсатором и дросселем насыщения, один из общих выводов витков намагничивания индукционной системы подсоединен к потенциальному электроду формирующей линии, а между вторым общим выводом витков намагничивания индукционной системы и заземленным электродом одинарной формирующей линии включена обмотка магнитного коммутатора, между защитным экраном и выходным фланцем ускорителя расположен цилиндрический вакуумный изолятор, на изоляторе размещена однослойная обмотка размагничивания, подсоединенная одним выводом к импульсному источнику размагничивания, отличается от прототипа тем, что на изоляторе размещена дополнительная обмотка, индуктивно связанная с обмоткой размагничивания, один вывод дополнительной обмотки соединен с защитным экраном, другой подсоединен к обмотке размагничивания и точка соединения обмоток подключена электрическим проводником к центральному электроду, на котором у защитного экрана размещены ферромагнитные сердечники дополнительного дросселя насыщения, при этом контур, образованный дополнительной обмоткой, проводником, частью центрального электрода и защитным экраном охватывает сечение сердечников дополнительного дросселя насыщения и является его короткозамкнутой обмоткой.

Изобретение иллюстрируется графическим материалом, где изображено:

Фиг.1 - Компоновочная схема выходного узла ускорителя, где обозначено: 1 - ферромагнитная индукционная система; 2 - витки намагничивания сердечников индукционной системы 1, имеющие два общих вывода; 3 - центральный электрод; 4 - фланец индукционной системы 1, соединенный с корпусом ускорителя; 5 - защитный экран; 6 - одинарная формирующая линия с емкостью CФ; 7 - магнитный импульсный генератор, состоящий из конденсаторов и дросселей насыщения звеньев сжатия C1-L1, …, CN-LN; 8 - магнитный коммутатор с индуктивностью обмотки LК; 9 - выходной фланец ускорителя; 10 - цилиндрический вакуумный изолятор; 11 - спиральная обмотка размагничивания с индуктивностью LР; 12 - клемма вывода импульсного источника размагничивания; 13 - дополнительная спиральная обмотка с индуктивностью LД; 14 - электрический проводник; 15 - ферромагнитные сердечники дополнительного дросселя насыщения; 16 - часть центрального электрода, ограниченная электрическим проводником и защитным экраном; 17 - нагрузка с импедансом ZН, например, коаксиальный диод релятивистского магнетрона; M - коэффициент взаимоиндукции обмоток 11 и 13; IР - ток в обмотке размагничивания 11; IД - ток в дополнительной обмотке 13; IВ - ток в витках намагничивания 2 сердечников индукционной системы 1; IН - ток в нагрузке 17; а и б - клеммы соединения магнитного импульсного генератора 7 с формирующей линией 6. Полярность на элементах схемы указана для работы устройства с релятивистским магнетроном, когда высоковольтный импульс является отрицательным. При положительной полярности импульса напряжения на нагрузке 17, например в случае работы с отражательным триодом, полярность первичного источника питания и источника размагничивания меняется на противоположную.

Фиг.2 - Принципиальная электрическая схема ускорителя.

Фиг.3 - эпюры тока и напряжения при работе ускорителя на нагрузку 17 с импедансом ZН, например, в виде коаксиального электронного диода; IН - ток в нагрузке 17 (ток пучка); UН - напряжение в цепи нагрузки 17; Umin - напряжение появления тока в цепи нагрузки 17; ΨД - потокосцепление дополнительного дросселя насыщения; iµД - ток намагничивания дополнительного дросселя насыщения; ΔtФ - длительность фронта импульса тока пучка при работе ускорителя без дополнительного дросселя насыщения в цепи нагрузки 17 (пунктирная линия); ΔtФД - длительность фронта импульса тока пучка при работе ускорителя с дополнительным дросселем насыщения в цепи нагрузки 17; ΔtД - время перемагничивания ферромагнитных сердечников 15 дополнительного дросселя насыщения (время задержки рабочего тока нагрузки IH - тока пучка); ΔtИ - длительность импульса тока пучка по основанию при работе ускорителя с дополнительным дросселем насыщения в цепи нагрузки 17; t1-t4 - время процесса.

Устройство содержит индукционную систему 1, состоящую из ряда последовательно установленных тороидальных ферромагнитных сердечников. Ферромагнитные сердечники охвачены витками намагничивания 2. Витки намагничивания 2 объединены с обеих сторон ферромагнитных сердечников в два общих вывода. По оси индукционной системы расположен центральный электрод 3. Один конец центрального электрода 3 через фланец индукционной системы 4 подсоединен к корпусу ускорителя, который заземлен, а второй, высоковольтный конец, подсоединен к защитному экрану 5.

Одинарная формирующая линия 6 с емкостью СФ подключена к выходу магнитного импульсного генератора 7, который выполнен из последовательных контуров Сi-Li, где Ci - конденсатор с емкостью Ci, Li - дроссель насыщения с индуктивностью обмотки Li, i возрастает от 1 до N. Один из общих выводов витков намагничивания индукционной системы 1 соединен с потенциальным электродом (точка а) формирующей линии 6, а между вторым общим выводом витков намагничивания индукционной системы 1 и заземленным электродом формирующей линии 6 (точка б) включена обмотка магнитного коммутатора 8 с индуктивностью LК. Между защитным экраном 5 и выходным фланцем 9 ускорителя расположен цилиндрический вакуумный изолятор 10. На внешней поверхности вакуумного изолятора 10 размещены обмотка размагничивания 11 с индуктивностью LР и дополнительная обмотка 13 с индуктивностью LP. Обмотки 11 и 13 соединены между собой последовательно, выполнены одинаковым проводником с одним направлением намотки и имеют взаимоиндуктивную связь M. Противоположный вывод обмотки 11 подсоединен к клемме 12 импульсного источника размагничивания, а свободный вывод обмотки 13 подключен к защитному экрану 5. Точка соединения обмоток 11 и 13 подключена электрическим проводником 14 к центральному электроду 3, на котором у защитного экрана 5 размещены ферромагнитные сердечники 15 дополнительного дросселя насыщения. Электрический контур, образованный дополнительной обмоткой 13, проводником 14, частью центрального электрода 16 и защитным экраном 5, охватывает сечение ферромагнитных сердечников 15 дополнительного дросселя насыщения и является его короткозамкнутой обмоткой. Система расположения и соединения указанных элементов выходного узла ускорителя по электрической схеме представляет собой воздушный трансформатор с закороченной вторичной обмоткой. Причем вторичная обмотка охватывает сечение ферромагнитных сердечников 15 дросселя насыщения, который при этом выполняет функцию ограничителя тока с временной задержкой. К выводам вторичного контура индукционной системы 1 подключена нагрузка 17 с импедансом ZН.

Устройство работает следующим образом. Первоначально от внешних источников малой мощности производится размагничивание сердечников импульсного трансформатора (не показаны), дросселей насыщения L1-LN магнитного импульсного генератора 7, магнитного коммутатора 8 и индукционной системы 1. С приходом управляющего импульса на тиристорный блок накопительный конденсатор первичного источника питания подключается к первичной обмотке импульсного трансформатора (не показаны). Начинается заряд входных конденсаторов МИГ 7. Работа МИГ заключается в передаче энергии от звена к звену с последовательным временным сжатием импульсов на каждой последующей ступени в 2-4 - раза. При этом достигается «быстрая» (за сотни не) зарядка формирующей линии 6, обеспечивающая срабатывание одновиткового магнитного коммутатора 8 с относительно небольшим сечением сердечника.

Поскольку обмотка размагничивания 11 подключена к клемме 12 импульсного источника размагничивания, то после подачи управляющего импульса одновременно с зарядом входных конденсаторов МИГ 7 начинается формирование тока в цепи индуктивности LР для дополнительного размагничивания сердечников индукционной системы 1. Величина тока IР, протекающего по обмотке 11, определяется согласно уравнению, описывающему работу воздушного трансформатора, включенного на постоянное напряжение U0 при замкнутой вторичной обмотке [Гинзбург С.Г. Методы решения задач по переходным процессам в электрических цепях // М.: Высш. шк., 1967, с.99]

где U0 - напряжение первичного источника питания;

R1 - сопротивление первичного контура;

δ1 - коэффициент затухания первичного контура;

σ - общий коэффициент рассеяния.

Ток IР протекает по центральному электроду 3 и имеет направление в пространстве, встречное с током IВ в витках намагничивания 2 сердечников индукционной системы 1 (фиг.1 и фиг.2). Это позволяет произвести дополнительное размагничивание ферромагнитных сердечников индукционной системы 1 до более глубокого отрицательного насыщения.

За счет взаимоиндуктивной связи M между обмотками 11 и 13 в обмотке 13 наводится ток IД, максимальная величина которого равна

где M - коэффициент взаимоиндукции обмоток 11 и 13 с индуктивностями LР и LД, соответственно;

p1,2 - корни характеристического уравнения;

δ1 и δ2 - коэффициенты затухания контуров;

δ = ( δ 1 + δ 2 ) 2 4 σ δ 1 δ 2 - число вещественное.

Направление тока IД на участке 16 центрального электрода 3 является встречным к рабочему току нагрузки IН ускорителя (фиг.1 и фиг.2). Поэтому ток IД, наведенный в короткозамкнутой обмотке дополнительного дросселя насыщения, производит размагничивание его сердечников 15, расположенных на центральном электроде 3, перед рабочим импульсом до состояния насыщения, противоположного протеканию тока нагрузки IН.

В то же время, после компрессии импульса в звеньях МИГ, под действием нарастающего напряжения на формирующей линии 6 ферромагнитный сердечник магнитного коммутатора 8 начинает перемагничиваться и при его насыщении формирующая линия 6 емкостью CФ разряжается на витки намагничивания 2 индукционной системы 1, которая также перемагничивается. Индуцируемое при этом напряжение через центральный электрод 3, фланец 4 индукционной системы 1 и корпус ускорителя поступает на нагрузку 17. В ускорителе это означает локализацию напряжения в промежутке катод-анод инжекторного модуля. В это время индукционная система 1 работает в режиме холостого хода, так как пучок в ускорителе отсутствует.

В процессе формирования высоковольтного импульса в нагрузке 17 напряжение прикладывается к обмотке 11 и в ней происходит увеличение тока IР на величину

При этом в дополнительной обмотке 13 за счет взаимоиндукции M происходит рост тока IД. Причем ток IД в обмотке 13 резко изменяется в основном на фронте импульса при перемагничивании сердечников 15 дополнительного дросселя насыщения, так как она является частью короткозамкнутого контура, охватывающего его ферромагнитные сердечники. Увеличение тока IД в обмотке 13 за время перемагничивания сердечников 15 дополнительного дросселя насыщения будет равно

Направление размагничивающих токов IР и IД не изменяется как при питании от источника размагничивания (U0), так и при генерации высокого напряжения (UН), поскольку полярность приложенных напряжений остается одинаковой. Ток IР имеет согласное направление в центральном электроде 3 с током нагрузки IН, а ток IД - встречное в части 16 центрального электрода 3 (направление токов для выбранной полярности нагрузки ускорителя показано на фиг.1 и фиг.2).

Процессы, происходящие в комплексной нагрузке ZН ускорителя, например, коаксиальном электронном диоде, проиллюстрированы на фиг.3. При локализации напряжения в промежутке катод-анод инжекторного модуля индукционная система 1 работает в режиме холостого хода до момента времени t2, так как пучок в ускорителе отсутствует. В этот момент времени, когда напряжение в межэлектродном зазоре вырастет до значения Umin, начинается эмиссия электронов с катода, но ток пучка IН задерживается дополнительным дросселем насыщения, его величина в интервале времени t2-t3 ограничивается на уровне тока перемагничивания iµД ферромагнитных сердечников 15 дополнительного дросселя (IH=iµД). В момент времени t3 сердечники 15 дополнительного дросселя насыщаются и ток IН резко возрастает до номинального значения. Здесь исключается влияние индуктивности обмотки LК магнитного коммутатора 8 на формирование импульса в нагрузке. Поэтому длительность фронта импульса будет меньше, чем в устройстве прототипа, поскольку она определяется лишь индуктивностью вторичного контура (вторичный виток индукционной системы 1 - нагрузка ZH) и величиной действующего напряжения UНС.

Из изложенного выше следует, что величину потокосцепления ΨД дополнительного дросселя насыщения необходимо выбирать с учетом требуемого времени укорочения фронта импульса, равного времени перемагничивания ΔtД ферромагнитных сердечников 15 дополнительного дросселя:

где UНС - среднее действующее напряжение, приложенное к обмотке дополнительного дросселя насыщения;

WД и SД - число витков и общая площадь поперечного сечения ферромагнитных сердечников 15 дополнительного дросселя насыщения;

ΔB - максимальное приращение индукции магнитного поля (для пермаллоя марки 50НП ΔB=2,5Т).

При этом длительность фронта импульса тока пучка будет равна

Таким образом, в предлагаемом линейном индукционном ускорителе уменьшение длительности фронта импульса тока пучка на величину времени перемагничивания ферромагнитных сердечников 15 дополнительного дросселя насыщения ведет к обострению фронта импульса, а это позволяет выполнить задачу формирования более моноэнергетичного пучка и повысить, тем самым, эффективность использования ускорителя.

Обратное размагничивание ферромагнитных сердечников 15 дополнительного дросселя насыщения осуществляется автоматически перед каждым рабочим импульсом ускорителя при разряде его первичного источника питания.

Пример реализации устройства.

ЛИУ предназначен для импульсного питания релятивистского магнетрона с импедансом ZН≈100 Ом, построен на магнитных элементах и может работать с частотой следования импульсов до 400 Гц. Номинальные выходные параметры устройства: напряжение UН=450 кВ, ток IН≈4,5 кА, длительность импульса по основанию ΔtИ=120 нс. Высоковольтный вакуумный изолятор 10 цилиндрической формы имеет длину 405 мм, наружный диаметр 220 мм. На внешней поверхности изолятора 10 уложены две спиральные обмотки 11 и 13 из медной шинки без изоляции с размером сечения 6×1,4 мм2. Обмотка 11 с индуктивностью LР=0,28 мГн имеет длину a1=250 мм, диаметр d1=222 мм, число витков w1=45 и является элементом цепи размагничивания сердечников индукционной системы 1. Один из ее выводов подсоединен к первичной обмотке импульсного трансформатора, на которую подается напряжение U0=2,6 кВ от первичного источника питания.

Для ограничения тока размагничивания IР в цепь индуктивности LР включено сопротивление R1=30 Ом. Обмотка 13 с индуктивностью LД=0,1 мГн имеет длину a2=132 мм, диаметр d2=222 мм, число витков w2=22 и является элементом цепи размагничивания дополнительного дросселя насыщения, предназначенного для обострения фронта импульса тока магнетрона. Цепь с индуктивностью LД имеет сопротивление R2=0,035 Ом. Обмотки 11 и 13 имеют взаимную индуктивность M=36,5 мкГн, за счет которой в короткозамкнутом контуре, включающем индуктивность LД, наводится ток IД, обеспечивающий размагничивание сердечников 15 дополнительного дросселя насыщения, установленного на участке 16 центрального электрода 3. Коэффициент связи обмоток 11 и 13 k = M / L P L Д = 0,218 .

Конструктивно дополнительный дроссель насыщения состоит из четырех ферромагнитных тороидальных сердечников 15 прямоугольного сечения размером К150×60×25 (внешний диаметр-внутренний диаметр-ширина в мм), изготовленных из пермаллоевой ленты марки 50НП толщиной 0,01 мм, коэффициент заполнения сердечников сталью равен 0,8. Обмоткой дополнительного дросселя является короткозамкнутый виток, образованный цепью, состоящей из дополнительной спиральной обмотки 13, электрического проводника 14, участка центрального электрода 16 и защитного экрана 5. Обмотки 11 и 13 расположены в вакуумном объеме, а высоковольтной изоляцией ферромагнитных сердечников 15 дополнительного дросселя насыщения является трансформаторное масло.

Процесс размагничивания дополнительного дросселя насыщения начинается при подаче импульса напряжения U0 от первичного источника питания на первичную обмотку импульсного трансформатора, к которой подключен через резистор R1 вывод 12 обмотки размагничивания 11. Величина тока IР≈86 А (1), протекающего по центральному электроду 3 в направлении, противоположном току IВ в витках намагничивания 2 сердечников индукционной системы 1, способствует размагничиванию сердечников (направления токов показаны на фиг.1 и фиг 2). Система расположения и соединения двух обмоток 11 и 13 представляет собой воздушный трансформатор с закороченной вторичной обмоткой, охватывающей сечение ферромагнитных сердечников 15. Поэтому при протекании в первичной обмотке 11 тока IР во вторичной обмотке 13 под воздействием взаимной индукции M наводится ток IД, имеющий направление на участке 16 в центральном электроде 3, противоположное направлению рабочего тока нагрузки IН. Этот ток IДmax≈31 А (2) размагничивает ферромагнитные сердечники 15 дополнительного дросселя до области отрицательного насыщения.

В процессе формирования импульса высокого напряжения магнетрона токи в обмотках 11 и 13 увеличиваются на величину: ΔIР≈193 А (3) и ΔIД≈78 A (4).

По экспериментальным данным длительность фронта ΔtФ импульса тока пучка в устройстве прототипа составляет около 35 нс (фиг.3). В предлагаемом устройстве рост тока IН в цепи нагрузки ZН под воздействием приложенного высокого напряжения UНС задерживается процессом перемагничивания ферромагнитных сердечников 15 дополнительного дросселя насыщения в течение времени ΔtД≈20 нс, которое зависит от выбранного потокосцепления ΨД (5). В этом случае длительность фронта ΔtФД импульса тока пучка IН согласно (6) составит примерно 15 нс, что в 2,3 раза короче, чем у прототипа.

Таким образом, применение в линейном индукционном ускорителе дополнительного дросселя насыщения, установленного на высоковольтной части 16 центрального электрода 3 в цепи нагрузки 17 внутри цилиндрического вакуумного изолятора 10 и имеющего короткозамкнутую обмотку 13, индуктивно связанную с обмоткой размагничивания 11, позволяет сократить длительность фронта импульса тока пучка более чем в 2 раза по сравнению с известным устройством. Задержка тока релятивистского магнетрона, связанная с перемагничиванием ферромагнитных сердечников 15 дополнительного дросселя насыщения и ведущая к обострению фронта импульса, способствует образованию равномерного по плотности электронного облака вблизи катода, улучшению формирования «спиц» в пространстве взаимодействия магнетрона и повышению эффективности преобразования кинетической энергии электронного облака в СВЧ-энергию.

Похожие патенты RU2583039C2

название год авторы номер документа
ЛИНЕЙНЫЙ ИНДУКЦИОННЫЙ УСКОРИТЕЛЬ 2009
  • Мащенко Александр Иванович
RU2400948C1
ЛИНЕЙНЫЙ ИНДУКЦИОННЫЙ УСКОРИТЕЛЬ 2002
  • Винтизенко И.И.
RU2231937C1
ЛИНЕЙНЫЙ ИНДУКЦИОННЫЙ УСКОРИТЕЛЬ ДЛЯ ТЕХНОЛОГИЧЕСКИХ ЦЕЛЕЙ 2003
  • Винтизенко И.И.
RU2242851C1
ЛИНЕЙНЫЙ ИНДУКЦИОННЫЙ УСКОРИТЕЛЬ 2004
  • Винтизенко И.И.
RU2265973C1
ЛИНЕЙНЫЙ ИНДУКЦИОННЫЙ УСКОРИТЕЛЬ 2005
  • Винтизенко Игорь Игоревич
RU2286034C1
ЛИНЕЙНЫЙ ИНДУКЦИОННЫЙ УСКОРИТЕЛЬ 2011
  • Винтизенко Игорь Игоревич
RU2459395C1
ИНЖЕКТОР ЛИНЕЙНОГО ИНДУКЦИОННОГО УСКОРИТЕЛЯ 2010
  • Винтизенко Игорь Игоревич
RU2455799C1
ЛИНЕЙНЫЙ ИНДУКЦИОННЫЙ УСКОРИТЕЛЬ С ДВУМЯ РАЗНОПОЛЯРНЫМИ ИМПУЛЬСАМИ 2012
  • Мащенко Александр Иванович
RU2522993C1
ЛИНЕЙНЫЙ ИНДУКЦИОННЫЙ УСКОРИТЕЛЬ 2000
  • Винтизенко И.И.
RU2178244C1
ГЕНЕРАТОР ВЫСОКОВОЛЬТНЫХ ЛИНЕЙНО-СПАДАЮЩИХ ИМПУЛЬСОВ МИКРОСЕКУНДНОЙ ДЛИТЕЛЬНОСТИ 2006
  • Винтизенко Игорь Игоревич
RU2303338C1

Иллюстрации к изобретению RU 2 583 039 C2

Реферат патента 2016 года ЛИНЕЙНЫЙ ИНДУКЦИОННЫЙ УСКОРИТЕЛЬ

Изобретение относится к ускорительной технике и может быть использовано для создания пучков заряженных частиц наносекундной длительности с высокой частотой следования импульсов. Линейный индукционный ускоритель содержит индукционную систему 1 в виде набора ферромагнитных сердечников, охваченных витками намагничивания 2, которые объединены в два общих вывода, центральный электрод 3, расположенный по оси индукционной системы 1, один конец электрода 3 заземлен на корпус ускорителя, а второй связан с защитным экраном 5, одинарную формирующую линию 6, заземленный и потенциальный электроды которой соединены с выходом магнитного импульсного генератора 7, состоящего из последовательных контуров сжатия, каждый из которых образован конденсатором и дросселем насыщения, один из общих выводов витков намагничивания индукционной системы 1 подсоединен к потенциальному электроду формирующей линии 6, а между вторым общим выводом витков намагничивания индукционной системы 1 и заземленным электродом одинарной формирующей линии 6 включена обмотка магнитного коммутатора 8, между защитным экраном 5 и выходным фланцем 9 ускорителя расположен цилиндрический вакуумный изолятор 10, на изоляторе 10 размещена однослойная обмотка размагничивания 11, подсоединенная одним выводом к клемме 12 импульсного источника размагничивания. На изоляторе 10 размещена дополнительная обмотка 13, индуктивно связанная с обмоткой размагничивания 11, один вывод дополнительной обмотки 13 соединен с защитным экраном 5, другой подсоединен к обмотке размагничивания 11 и точка соединения обмоток 11, 13 подключена электрическим проводником 14 к центральному электроду 3, на котором у защитного экрана 5 размещены ферромагнитные сердечники 15 дополнительного дросселя насыщения. Контур, образованный дополнительной обмоткой 13, проводником 14, частью центрального электрода 16 и защитным экраном 5, охватывает сечение сердечников 15 дополнительного дросселя насыщения и является его короткозамкнутой обмоткой. Технический результат - повышение эффективности ускорителя за счет уменьшении длительности фронта импульса тока пучка ускорителя. 1 ил.

Формула изобретения RU 2 583 039 C2

Линейный индукционный ускоритель, содержащий индукционную систему в виде набора ферромагнитных сердечников, охваченных витками намагничивания, которые объединены в два общих вывода, центральный электрод, расположенный по оси индукционной системы, один конец электрода заземлен на корпус ускорителя, а второй связан с защитным экраном, одинарную формирующую линию, заземленный и потенциальный электроды которой соединены с выходом магнитного импульсного генератора, состоящего из последовательных контуров сжатия, каждый из которых образован конденсатором и дросселем насыщения, один из общих выводов витков намагничивания индукционной системы подсоединен к потенциальному электроду формирующей линии, а между вторым общим выводом витков намагничивания индукционной системы и заземленным электродом одинарной формирующей линии включена обмотка магнитного коммутатора, между защитным экраном и выходным фланцем ускорителя расположен цилиндрический вакуумный изолятор, на изоляторе размещена однослойная обмотка размагничивания, подсоединенная одним выводом к импульсному источнику размагничивания, отличающийся тем, что на изоляторе размещена дополнительная обмотка, индуктивно связанная с обмоткой размагничивания, один вывод дополнительной обмотки соединен с защитным экраном, другой подсоединен к обмотке размагничивания и точка соединения обмоток подключена электрическим проводником к центральному электроду, на котором у защитного экрана размещены ферромагнитные сердечники дополнительного дросселя насыщения, при этом контур, образованный дополнительной обмоткой, проводником, частью центрального электрода и защитным экраном, охватывает сечение сердечников дополнительного дросселя насыщения и является его короткозамкнутой обмоткой.

Документы, цитированные в отчете о поиске Патент 2016 года RU2583039C2

ПТЭ, 2001, N5, с.104-109
ЛИНЕЙНЫЙ ИНДУКЦИОННЫЙ УСКОРИТЕЛЬ 2011
  • Винтизенко Игорь Игоревич
RU2459395C1
ЛИНЕЙНЫЙ ИНДУКЦИОННЫЙ УСКОРИТЕЛЬ 2009
  • Мащенко Александр Иванович
RU2400948C1
ЛИНЕЙНЫЙ ИНДУКЦИОННЫЙ УСКОРИТЕЛЬ 2002
  • Винтизенко И.И.
RU2231937C1
US 4888556A, 19.12.1989
Способ измерения магнитного потока 1973
  • Бродовский Владимир Николаевич
  • Иванов Евгений Серафимович
  • Каржавов Борис Николаевич
  • Рыбкин Юлий Павлович
SU481864A1

RU 2 583 039 C2

Авторы

Мащенко Александр Иванович

Даты

2016-05-10Публикация

2014-05-14Подача