УНИВЕРСАЛЬНЫЙ ВОДОРОДНО-КИСЛОРОДНЫЙ РАКЕТНЫЙ МОДУЛЬ Российский патент 2016 года по МПК B64G1/00 

Описание патента на изобретение RU2585210C1

Изобретение относится к ракетно-космической технике, а именно к конструкции универсальных водородно-кислородных ракетных модулей (далее ракетный модуль), предназначенных для выведения на орбиту полезных грузов с применением в основном в ракетных блоках вторых и третьих ступеней различных типов ракет-носителей (РН).

Известен разгонный блок (КВРБ), включающий топливные отсеки, двигательные установки, хвостовой отсек, в котором используется водородно-кислородное топливо (см. В.Н. Кобелев, А.Г. Милованов, Средства выведения космических аппаратов, изд. «Рестар», Москва, 2009 г., стр. 401).

Известна двухступенчатая баллистическая многоразовая транспортная космическая система, содержащая ракетные ступени с баками горючего (водород) и баками окислителя (кислород), маршевые двигательные установки, хвостовой отсек (RU патент №2485025).

Известна ракета-носитель, в которой блок второй ступени содержит бак горючего (жидкий водород), бак окислителя (жидкий кислород), кислородно-водородные двигатели, переходной отсек, хвостовой отсек, а также ферменный межступенчатый отсек и отражатель, защищающий центральный блок первой ступени от воздействия высоких температур газовых струй при запуске двигателей второй ступени (см. «Новости космонавтики» №5 (316) стр. 44, 2009 г. - прототип).

Конструкция известного, а также вышеописанных ракетных блоков ограничивает их эксплуатационные возможности, так как требуют проведения наземной экспериментальной отработки ракетного блока в полном объеме для каждого типа РН, применяемой для выведения на орбиту полезного груза, а их наземная отработка и эксплуатация с использованием водорода и кислорода в топливных баках требует принять меры по пожаровзрывозащищенности, исключающей образование взрывоопасной смеси в ракетном блоке.

Задачами заявленного технического решения является создание ракетного модуля ракетного блока, расширяющие его эксплуатационные возможности путем сокращения объема наземной экспериментальной отработки при макетно-конструкторских, статических, динамических, электрических испытаниях ракетного блока и исключения необходимости проведения «холодных» и «огневых» стендовых наземных испытаний ракетного модуля под каждый тип РН с обеспечением его пожаровзрывобезопасности, за счет введения и размещения в межбаковом отсеке ракетного модуля ракетного блока автономных приборов служебных систем, электрически взаимодействующих с приборами контроля и управления применяемой РН и наземного контрольного и испытательного оборудования, а также за счет компоновки узлов, агрегатов пневмогидросистемы и их связей с наземным контрольным и испытательным оборудованием, обеспечивающих унификацию ракетного модуля для ракетных блоков с различными суммарными импульсами тяги.

Поставленная задача решается тем, что в универсальном водородно-кислородном ракетном модуле, содержащем топливные баки горючего и окислителя, межбаковый отсек, ферменный межступенчатый отсек, сопряженный с ракетой-носителем, кислородно-водородные двигатели, согласно изобретению ферменный межступенчатый отсек с закрепленным на его нижнем торце теплозащитным отражателем является составной частью ракетного модуля, при этом под теплозащитным отражателем размещены средства продувки кислородно-водородных двигателей азотом, которые посредством трубопровода через разъемное соединение, закрепленное на верхнем торце ферменного межступенчатого отсека, связаны с входными штуцерами подачи азота на кислородно-водородных двигателях, а в межбаковом отсеке установлены приборы служебных систем ракетного модуля и при необходимости приборы системы управления и радиосистем РКН, электрически взаимодействующие с приборами систем ракеты-носителя, закрепленные посредством узлов крепления в нишах, выполненных в межбаковом отсеке, при этом на межбаковом отсеке размещен разделяемый узел, который посредством управляющих клапанов пневмогидравлической системы ракетного модуля взаимодействует с агрегатом связи бортового и наземного оборудования, а агрегаты пневмогидравлической системы, электрически связанные со служебными системами ракетного модуля, размещены в продуваемых нейтральным газом полостях герметичных корпусов, соединенных трубопроводами подачи газа от наземного оборудования через разделяемый узел и агрегат связи бортового и наземного оборудования и соединенных трубопроводами выведения газа наружу ракетного модуля с защитными устройствами, закрепленными на корпусе ракетного модуля, а баллоны бортового наддува гелием топливного бака окислителя и их выходные патрубки, через фланцевые соединения и узлы герметизации жестко закреплены на нижнем днище топливного бака горючего, при этом отсеки ракетного модуля снабжены заборными устройствами, взаимодействующими со съемными трубопроводами наземного газоанализатора, а на внешней стороне ферменного межступенчатого отсека размещена съемная пылевлагозащитная оболочка, причем в зависимости от типа ракет-носителей топливные баки горючего и топливные баки окислителя выполнены одного диаметра с высотами в зависимости от суммарного импульса тяги ракетного блока.

Заявленный универсальный водородно-кислородный ракетный модуль изображен на чертежах:

- на фиг. 1 - общий вид;

- на фиг. 2 - ферменный межступенчатый отсек с теплозащитным отражателем (выносной элемент А, фиг. 1)

- на фиг. 3 - межбаковый отсек и днища баков (выносной элемент Б, фиг. 1).

- на фиг. 4 - баллон бортового наддува гелием топливного бака окислителя на днище бака горючего (выносной элемент В, фиг. 3).

На чертежах представлены позиции:

1 - ракетный модуль;

2 - топливный бак горючего;

3 - топливный бак окислителя;

4 - межбаковый отсек;

5 - ферменный межступенчатый отсек;

6 - ракета-носитель;

7 - кислородно-водородные двигатели;

8 - теплозащитный отражатель;

9 - баллон;

10 - клапан;

11 - трубопровод;

12 - разъемное соединение;

13 - входной штуцер;

14 - ферма;

15 - двигательный отсек;

16 - прибор системы контроля;

17 - прибор системы управления;

18 - пневмогидравлическая система;

19 - прибор системы пожаровзрывопредупреждения;

20 - газоанализатор;

21 - верхний отсек;

22 - кабели;

23 - прибор системы управления ракеты космического назначения;

24 - прибор радиосистемы ракеты космического назначения;

25 - стендовая система управления и контроля;

26, 27 - ниши;

28 - узел крепления;

29 - разделяемый узел;

30 - трубопровод;

31 - управляющий клапан;

32 - агрегат связи;

33 - наземное оборудование;

34 - разъемный электросоединитель;

35 - корпус;

36 - корпус;

37 - трубопровод;

38 - защитное устройство;

39 - баллон бортового наддува топливного бака окислителя;

40 - выходной патрубок;

41 - фланцевое соединение;

42 - узел герметизации;

43 - нижнее днище;

44, 45, 46 - заборные устройства;

47, 48, 49 - съемные трубопроводы;

50 - наземный газоанализатор;

51 - съемная пылевлагозащитная оболочка;

52, 53, 54 - кольцевая секция;

55, 56 - обечайка;

57 - наземная система управления и пуска;

58, 59, 60 - коллекторы;

61, 62, 63 - дренажные защитные устройства;

64 - пневмозамок;

65 - бортовая часть узла связи;

66 - отделяемая часть узла связи;

67 - средство разделения.

Ракетный модуль 1 (фиг. 1) как составная часть ракетного блока, содержащий топливный бак горючего 2 (водород) и топливный бак окислителя 3 (кислород), межбаковый отсек 4, ферменный межступенчатый отсек 5, сопряженный с предыдущей ступенью ракеты-носителя 6, отделяемой от термогазодинамического воздействия при запуске кислородно-водородных двигателей 7, ферменный межступенчатый отсек 5 с закрепленным на его нижнем торце теплозащитным отражателем 8 является составной частью ракетного модуля 1.

Под теплозащитным отражателем 8 размещены средства продувки кислородно-водородных двигателей 7 азотом (фиг. 1).

Средства продувки кислородно-водородных двигателей 7 азотом состоят из одного или нескольких баллонов 9 и клапана 10, которые посредством трубопровода 11 через разъемное соединение 12, закрепленное на верхнем торце ферменного межступенчатого отсека 5 (фиг. 2), связаны с входными штуцерами 13 подачи азота на кислородно-водородных двигателях 7. Трубопровод 11 закреплен на ферме 14 двигательного отсека 15.

В межбаковом отсеке 4 (фиг. 3) установлены приборы служебных систем ракетного модуля 1, включающие приборы системы контроля 16, обеспечивающие сбор и преобразование измеряемых параметров систем ракетного модуля 1 и контроль уровней заправки компонентов топлива; приборы системы управления 17, управляющие агрегатами пневмогидравлической системы 18 и кислородно-водородными двигателями 7, реализующие циклограмму разделения ракетного модуля 1 с предыдущей ступенью ракеты-носителя 6, запуска, работы, останова и аварийной защиты кислородно-водородных двигателей 7; приборы системы пожаровзрывопредупреждения 19 (фиг. 3) с газоанализаторами 20, которые размещены в верхнем отсеке 21, в межбаковом отсеке 4 и двигательном отсеке 15.

Приборы служебных систем (приборы системы контроля 16, приборы систем управления 17) электрически взаимосвязаны посредством кабелей 22 (фиг. 2, 3) в условиях полета с приборами системы управления 23 и приборами радиосистемы 24, применяемой РН, а при наземных испытаниях, включая огневые, со стендовой системой управления и контроля 25 испытаниями ракетного модуля 1.

В межбаковом отсеке 4 ракетного модуля 1 выполнены ниши 26, 27 (фиг. 3), в которых размещены и закреплены посредством узлов крепления 28 приборы служебных систем ракетного модуля 1, а также при необходимости приборы системы управления 23 и приборы радиосистемы 24, применяемой РН.

Межбаковый отсек 4 содержит разделяемый узел 29 (фиг. 3), который посредством трубопроводов 30 и управляющих клапанов 31 пневмогидравлической системы 18 ракетного модуля 1 взаимодействует с отделяемым при отрыве ракеты космического назначения от пускового устройства агрегатом связи 32 бортового и наземного оборудования 33.

Ракета космического назначения и пусковое устройство на чертежах не показаны.

Разделяемый узел 29 взаимодействует с наземным оборудованием 33 (фиг. 1, 3) также через разъемные электросоединители 34 бортовой кабельной сети ракетного модуля 1.

Для исключения возможного образования в ракетном модуле 1 взрывоопасной смеси компонентов топлива водорода и кислорода и окружающей атмосферы агрегаты пневмогидравлической системы 18, электрически связанные с приборами служебных систем, включающие системы контроля 16, приборы системы управления 17, и приборами системы пожаровзрывопредупреждения 19 размещены в продуваемых нейтральным газом корпусах 35, 36, при этом корпуса 35 подсоединены к трубопроводам 37 выведения газа наружу универсального водородно-кислородного ракетного модуля 1, а трубопроводы 37 и корпус 36 агрегата связи 32 содержат защитные устройства 38 в виде обратных клапанов (фиг. 3).

Баллоны бортового наддува гелием топливного бака окислителя 39 и их выходные патрубки 40 (фиг. 4) через фланцевые соединения 41 и узлы герметизации 42 жестко закреплены на нижнем днище 43 топливного бака горючего 2.

Размещение баллонов бортового наддува гелием топливного бака окислителя 39 в топливном баке горючего 2 обеспечивает возможность достижения высокой плотности гелия ρ20К=191 кг/м3 при давлении 20 МПа (примерно 200 кгс/см2) и температуре 20 К (температура кипящего водорода), тем самым обеспечить унификацию объема и количества баллонов бортового наддува гелием топливного бака окислителя 39 для заправки определенного, в зависимости от объема бака горючего 2, количества гелия для его наддува в полете.

Для контроля герметичности пневмогидравлической системы 18 и кислородно-водородных двигателей 7 при предстартовой подготовке его верхний 21, межбаковый 4 и двигательный 15 отсеки снабжены заборными устройствами 44, 45 и 46, взаимодействующие со съемными трубопроводами 47, 48 и 49 (фиг. 1) наземного газоанализатора 50, а на внешней стороне ферменного межступенчатого отсека 5 размещена и закреплена с уплотнением (на чертеже не показано) съемная пылевлагозащитная оболочка 51.

Съемная пылевлагозащитная оболочка 51 совместно с теплозащитным отражателем 8 и корпусом двигательного отсека 15 образует контролируемую наземным газоанализатором 50 через заборное устройство 46 и съемный трубопровод 49 полость Г на отсутствие или присутствие в ней истекающей из заполняемых гелиевой смесью при испытаниях на герметичность полостей пневмогидравлической системы 18 и кислородно-водородных двигателей 7.

В зависимости от типа ракет-носителей топливные баки горючего 2 и топливные баки окислителя 3 выполнены одного диаметра с высотами L1 и L2 в зависимости от суммарного импульса тяги ракетного блока с ракетным модулем 1.

Различные объемы топливных баков горючего и окислителя 2, 3, например, формируются за счет набора унифицированных типовых кольцевых секций 52 и 53, 54 обечаек 55 и 56 (фиг. 1), высота которых по каждому баку определяется на основе соотношения компонентов топлива и удельной массы окислителя и горючего, при этом кольцевые секции 52 обечайки 55 имеют одинаковую высоту l1 и два варианта высот l2 и 1,5l2 секций 53, 54 обечайки 56, что позволит создать ряд емкостей под решаемые задачи для РН различных типов.

Наземная экспериментальная отработка предлагаемого ракетного модуля 1 проводится в полном объеме при автономной отработке его составных частей и агрегатов, макетно-конструкторских, статических, динамических, разделенческих, электрических, «холодных» и «огневых» стендовых наземных испытаний с учетом его возможных модификаций по объемам-высотам цилиндрических топливных баков горючего 2 и окислителя 3 для ракетных блоков с различными суммарными импульсами тяги верхних ступеней, применяемых для запуска РН 6 полезных грузов на орбиты выведения.

Пылевлагозащищенность ферменного межступенчатого отсека 5 со степенью герметизации, достаточной для контроля герметичности пневмогидравлической системы 18 и кислородно-водородных двигателей 7 ракетного модуля 1, обеспечивается за счет закрепленной на его цилиндрической образующей съемной пылевлагозащитной оболочки 51, снимаемой перед заправкой РКН.

Заборные устройства 44, 45, 46 обеспечивают возможность контроля герметичности ракетного модуля 1 на предприятии-изготовителе и на технической позиции космодрома, исключая необходимость доступа обслуживающего персонала внутрь отсеков, что обеспечивает высокую безопасность эксплуатации ракетного модуля 1 ракетного блока.

Контроль герметичности ракетного модуля 1 производится путем заполнения воздушно-гелиевой смесью внутренних полостей пневмогидравлической системы 18 и последующего отбора газовой среды из переднего 21, межбакового 4 и двигательного 15 отсеков на наземный газоанализатор 50.

Система пожаровзрывопредупреждения работает с начала заправки компонентами топлива ракетного модуля 1 ракетного блока, газоанализаторы 20 выдают в прибор системы пожаровзрывопредупреждения 19 информацию о наличии газообразообразования водорода и кислорода в верхнем 21, межбаковом 4 и двигательном 15 отсеках.

При наличии в отсеках водорода или кислорода и роста их содержания прибор системы пожаровзрывопредупреждения 19 дает сигнал в наземную систему управления и пуска 57 о прекращении заправки и включении продувки через коллекторы 58, 59, 60 полостей верхнего 21, межбакового 4 и двигательного 15 отсеков азотом из наземной системы управления и пуска 57 с выбросом азота наружу через дренажные защитные устройства 61, 62 и 63.

При отсутствии газообразных компонентов топлива в верхнем 21, межбаковом 4 и двигательном 15 отсеках перед запуском первой ступени ракеты космического назначения включается азотная продувка полостей переднего 21, межбакового 4 и двигательного 15 отсеков от наземных систем через коллекторы 58, 59, 60 с выбросом азота наружу через дренажные защитные устройства 61, 62 и 63, закрепленные на верхнем отсеке 21, межбаковом отсеке 4 и двигательном отсеке 15.

Разделение разделяемого узла 29 и отделение от межбакового отсека 4 остающейся на земле части агрегата связи 32 происходит по команде «контакт подъема» открытием пневмозамков 64, удерживающих бортовую часть узла связи 65 и отделяемую часть узла связи 66 с сохранением для последующих запусков РКН корпуса 36 агрегата связи 32 с управляющими клапанами 31, разъемными электросоединителями 34 и защитным устройством 38.

После отделения от межбакового отсека 4 остающейся на земле части агрегата связи 32 защитные устройства 38 обеспечивают наличие избыточного давления нейтрального газа в полостях корпусов 35 с агрегатами пневмогидравлической системы 18, электрически связанными со служебными системами ракетного модуля 1, в течение всего времени полета РКН и обеспечивает пожаровзрывозащищенность исключением возможного образования взрывоопасной смеси компонентов топлива водорода и кислорода и окружающей атмосферы.

При полете РКН ферменный межступенчатый отсек 5 ракетного модуля 1 остается на предыдущей ступени ракеты-носителя 6 после ее «горячего» отделения от ракетного модуля 1 ракетного блока.

Команда на средства разделения 67 формируется прибором системы управления ракеты космического назначения 23 и подается через 1 секунду после выключения маршевых двигателей предыдущей ступени ракеты-носителя 6. Перед выключением маршевых двигателей предыдущей ступени ракеты-носителя 6 прибор системы управления 17 по получению команды от прибора системы управления ракеты космического назначения 23 формирует команды на запуск кислородно-водородных двигателей 7, при этом «зажигание» кислородно-водородных двигателей 7 происходит за 0,5 с до выключения маршевых двигателей предыдущей ступени ракеты-носителя 6 ракеты космического назначения.

Перед запуском кислородно-водородных двигателей 7 в полете РКН по команде от прибора системы управления 17 открывается клапан 10 подачи азота для продувки полостей этих двигателей из бортового баллона 9. Продувка азотом удаляет взрывоопасную кислородосодержащую среду в полостях горючего.

Использование заявленного технического решения позволит исключить автономную наземную отработку каждого типа применяемой РН за счет размещения служебных систем, электрически взаимодействующих с приборами систем ракеты-носителя, в межбаковом отсеке, а также за счет компоновки узлов, агрегатов и их связей с наземным оборудованием, что в конечном итоге позволит расширить эксплуатационные возможности ракетного модуля.

Похожие патенты RU2585210C1

название год авторы номер документа
РАКЕТНЫЙ КРИОГЕННЫЙ РАЗГОННЫЙ БЛОК 2014
  • Хагуш Владимир Владимирович
  • Зайцев Станислав Николаевич
  • Богомолов Алексей Александрович
  • Зайцев Александр Николаевич
RU2548282C1
РАКЕТА КОСМИЧЕСКОГО НАЗНАЧЕНИЯ 2008
  • Ахметов Равиль Нургалиевич
  • Баранов Дмитрий Александрович
  • Богданов Сергей Дмитриевич
  • Дмитриев Вячеслав Васильевич
  • Иванеко Юрий Михайлович
  • Кирилин Александр Николаевич
  • Лагно Олег Геннадьевич
  • Новиков Валентин Николаевич
  • Пашистов Владимир Владимирович
  • Солунин Владимир Сергеевич
  • Федосеев Евгений Григорьевич
RU2368542C1
РАКЕТНЫЙ РАЗГОННЫЙ БЛОК 2009
  • Клиппа Владимир Петрович
  • Веселов Виктор Николаевич
  • Журавлев Владимир Иванович
  • Катаев Виктор Иванович
  • Рожков Михаил Викторович
RU2412871C1
МНОГОРАЗОВЫЙ УСКОРИТЕЛЬ ПЕРВОЙ СТУПЕНИ РАКЕТЫ-НОСИТЕЛЯ 1999
  • Киселев А.И.
  • Медведев А.А.
  • Труфанов Ю.Н.
  • Радугин И.С.
  • Кузнецов Ю.Л.
  • Панкевич А.А.
  • Набойщиков Г.Ф.
  • Ушаков В.М.
RU2148536C1
РАКЕТНЫЙ РАЗГОННЫЙ БЛОК 2002
  • Веселов В.Н.
  • Журавлев В.И.
  • Иванов А.В.
  • Канаев А.И.
  • Катаев В.И.
  • Рожков М.В.
  • Боев А.Д.
RU2212362C1
РАКЕТНЫЙ РАЗГОННЫЙ БЛОК 2009
  • Клиппа Владимир Петрович
  • Веселов Виктор Николаевич
  • Лакеев Василий Николаевич
  • Чекмарев Борис Павлович
  • Падалка Александр Иванович
  • Войтенко Константин Анатольевич
  • Катаев Виктор Иванович
  • Рожков Михаил Викторович
RU2412088C1
РАКЕТНЫЙ РАЗГОННЫЙ БЛОК 2000
  • Семенов Ю.П.
  • Филин В.М.
  • Клиппа В.П.
  • Попов К.К.
  • Веселов В.Н.
  • Сотсков Б.П.
  • Журавлев В.И.
  • Катаев В.И.
  • Кочетов В.В.
  • Рожков М.В.
  • Кашеваров А.В.
  • Курносов В.А.
  • Мащенко В.В.
  • Романов А.А.
  • Голландцев А.В.
  • Негодяев В.И.
RU2153447C1
РАКЕТНЫЙ РАЗГОННЫЙ БЛОК 2001
  • Семенов Ю.П.
  • Филин В.М.
  • Ефремов И.С.
  • Клиппа В.П.
  • Мащенко В.В.
  • Софинский А.Н.
  • Веселов В.Н.
  • Сотсков Б.П.
  • Журавлев В.И.
  • Катаев В.И.
  • Иванов А.В.
  • Канаев А.И.
  • Бодрикова Г.И.
  • Кочетов В.В.
  • Негодяев В.И.
  • Белоусов Н.М.
RU2205138C2
МНОГОРАЗОВЫЙ УСКОРИТЕЛЬ ПЕРВОЙ СТУПЕНИ РАКЕТЫ-НОСИТЕЛЯ НА БАЗЕ УНИФИЦИРОВАННОГО РАКЕТНОГО БЛОКА 2012
  • Кузин Анатолий Иванович
  • Лехов Павел Анатольевич
  • Семенов Александр Иванович
  • Корнакова Людмила Вадимовна
  • Мамин Владимир Васильевич
  • Альдяков Анатолий Анатольевич
RU2492123C1
РАКЕТНО-СТАРТОВЫЙ КОМПЛЕКС С РАКЕТНО-КАТАПУЛЬТНЫМ АППАРАТОМ ДЛЯ ПОЛЕТОВ НА ЛУНУ И ОБРАТНО 2020
  • Сиротин Валерий Николаевич
RU2743061C1

Иллюстрации к изобретению RU 2 585 210 C1

Реферат патента 2016 года УНИВЕРСАЛЬНЫЙ ВОДОРОДНО-КИСЛОРОДНЫЙ РАКЕТНЫЙ МОДУЛЬ

Изобретение относится к ракетно-космической технике и может быть использовано в ракетных блоках (РБ). Универсальный водородно-кислородный ракетный модуль (РМ) содержит топливные баки горючего и окислителя, межбаковый отсек с нишами и разделяемым узлом, ферменный межступенчатый отсек с теплозащитным отражателем и съемной пылевлагозащитной оболочкой, сопряженный с ракетой-носителем (РН), кислородно-водородные двигатели (КВД) с входными штуцерами подачи азота, средства продувки КВД азотом, трубопроводы, разъемные соединения, приборы служебных систем, системы управления и радиосистем РКН, узлы крепления, пневмогидравлическую систему с агрегатами и управляющими клапанами для взаимодействия с агрегатом связи бортового и наземного оборудования, герметичные корпуса, защитные устройства, баллоны бортового наддува гелием топливного бака окислителя с выходными патрубками, фланцевые соединения, узлы герметизации, заборные устройства, съемные трубопроводы наземного газоанализатора. Топливные баки горючего и окислителя выполнены одного диаметра с высотами в зависимости от суммарного импульса тяги ракетного блока и типа РН. Изобретение позволяет сократить объём наземных испытаний РБ и исключить стендовые наземные испытания РБ, унифицировать РМ для разных типов РБ. 4 ил.

Формула изобретения RU 2 585 210 C1

Универсальный водородно-кислородный ракетный модуль, содержащий топливные баки горючего и окислителя, межбаковый отсек, ферменный межступенчатый отсек, сопряженный с ракетой-носителем, кислородно-водородные двигатели, отличающийся тем, что в нем ферменный межступенчатый отсек с закрепленным на его нижнем торце теплозащитным отражателем является составной частью ракетного модуля, при этом под теплозащитным отражателем размещены средства продувки кислородно-водородных двигателей азотом, которые посредством трубопровода через разъемное соединение, закрепленное на верхнем торце ферменного межступенчатого отсека, связаны с входными штуцерами подачи азота на кислородно-водородных двигателях, а в межбаковом отсеке установлены приборы служебных систем ракетного модуля и при необходимости приборы системы управления и радиосистем РКН, электрически взаимодействующие с приборами систем ракеты-носителя, закрепленные посредством узлов крепления в нишах, выполненных в межбаковом отсеке, при этом на межбаковом отсеке размещен разделяемый узел, который посредством управляющих клапанов пневмогидравлической системы ракетного модуля взаимодействует с агрегатом связи бортового и наземного оборудования, а агрегаты пневмогидравлической системы, электрически связанные со служебными системами ракетного модуля, размещены в продуваемых нейтральным газом полостях герметичных корпусов, соединенных трубопроводами подачи газа от наземного оборудования через разделяемый узел и агрегат связи бортового и наземного оборудования и соединенных трубопроводами выведения газа наружу ракетного модуля с защитными устройствами, закрепленными на корпусе ракетного модуля, а баллоны бортового наддува гелием топливного бака окислителя и их выходные патрубки, через фланцевые соединения и узлы герметизации жестко закреплены на нижнем днище топливного бака горючего, при этом отсеки ракетного модуля снабжены заборными устройствами, взаимодействующими со съемными трубопроводами наземного газоанализатора, а на внешней стороне ферменного межступенчатого отсека размещена съемная пылевлагозащитная оболочка, причем в зависимости от типа ракет-носителей топливные баки горючего и топливные баки окислителя выполнены одного диаметра с высотами в зависимости от суммарного импульса тяги ракетного блока.

Документы, цитированные в отчете о поиске Патент 2016 года RU2585210C1

Журнал "Новости космонавтики"
Москва
Издательство "Новости космонавтики"
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
Колосоуборка 1923
  • Беляков И.Д.
SU2009A1
стр
Приспособление для плетения проволочного каркаса для железобетонных пустотелых камней 1920
  • Кутузов И.Н.
SU44A1
Способ интегнирования кож и изделий из них 1956
  • Сучков В.Г.
SU108810A1
WO 2009148625 A2, 10.12.2009
US 20120227374 A1, 13.09.2012.

RU 2 585 210 C1

Авторы

Ахметов Равиль Нургалиевич

Драчев Владимир Петрович

Малов Антон Викторович

Маркин Александр Александрович

Москвин Сергей Викторович

Петренко Станислав Александрович

Плужнов Александр Юрьевич

Прокофьев Владимир Васильевич

Солунин Владимир Сергеевич

Даты

2016-05-27Публикация

2015-04-28Подача