ПАССИВНЫЙ ДАТЧИК ТЕМПЕРАТУРЫ НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ Российский патент 2016 года по МПК G01K11/24 H01L41/08 

Описание патента на изобретение RU2585487C1

Изобретение относится к пьезоэлектрическим датчикам, предназначенным для дистанционного контроля температуры.

Известен датчик на поверхностных акустических волнах (ПАВ), содержащий корпус, внутри которого расположен пьезоэлектрический звукопровод, на рабочей поверхности которого расположены два встречно-штыревых преобразователя (ВШП) и акустопоглотитель на торцах. В одном из датчиков звукопровод с ВШП на рабочей поверхности представляет собой линию задержки, которая включается в цепь обратной связи усилителя и представляет собой генератор электрических колебаний, частота которого зависит от температуры или от величины деформации звукопровода (В.В. Малов. Пьезорезонансные датчики, М.: Энергоатомиздат, 1989, с. 215) [1]. Сигнал от датчика с помощью передающей антенны, подсоединенной к генератору, передается на приемное устройство, которое и осуществляет дистанционный контроль.

Недостатком является то, что датчику необходим источник питания, который следует периодически менять и который может отказать, например разрядиться в непредусмотренное для этого время, что снижает надежность датчика. Кроме того, наличие в усилителе полупроводниковых элементов может привести к выходу его из строя при наличии ионизирующего излучения, что также понижает надежность датчика.

Известен пассивный датчик на поверхностных акустических волнах (ПАВ), в котором корпус выполнен герметичным, содержащим пьезоэлектрический звукопровод, на рабочей поверхности которого расположены встречно-штыревые преобразователи (ВШП), один из которых является однонаправленным и нагружен на приемо-передающую антенну, расположенную вне герметичного корпуса, а другой ВШП выполнен с расщепленными штырями и нагружен на импеданс, значение которого зависит от температуры. При этом коэффициент отражения от отражательного ВШП зависит от величины импеданса, следовательно, коэффициент отражения также зависит от температуры (RU 2387051, МПК H01L 41/107, G01D 5/12) [2]. Опрос датчика производится с помощью считывателя, посылающего опрашивающий электромагнитный импульс, который принимается антенной датчика и преобразуется в поверхностные акустические волны (ПАВ). ПАВ, отражаясь от отражательного ВШП, принимаются приемо-передающим преобразователем и снова преобразуются в электромагнитный сигнал, который принимается приемником считывателя. Величина этого сигнала зависит от коэффициента отражения, который в свою очередь зависит от величины импеданса, нагруженного на отражательный ВШП. Таким образом, по величине отраженного от датчика импульса определяют измеряемую температуру.

Недостатком данной конструкции является низкая точность определения температуры из-за того, что для заметного изменения коэффициента отражения ПАВ внешняя нагрузка должна измениться на 5-10%.

Задача, на решение которой направлено изобретение, состоит в создании датчика на ПАВ, лишенного указанного недостатка.

Технический результат заключается в повышении точности измерения температуры за счет введения еще одного звукопровода, выполненного из материала с малым ТКЗ, и на котором расположены ВШП.

Это достигается тем, что в датчике температуры на поверхностных акустических волнах, содержащем герметичный корпус, в котором находится пьезоэлектрический звукопровод с большим температурным коэффициентом задержки (ТКЗ) порядка 10-4 1/градус, на рабочей поверхности которого расположены встречно-штыревые преобразователи (ВШП) с одинаковой центральной частотой f0, один из которых нагружен на приемо-передающую антенну, а другой ВШП является отражательным, введен еще один пьезоэлектрический звукопровод с малым ТКЗ в 50-100 раз меньшим по сравнению с ТКЗ порядка 10-4 1/градус, на котором расположены также два ВШП с той же центральной частотой f0, один из которых соединен электрически с приемо-передающей антенной параллельно с ВШП, расположенным на звукопроводе с большим ТКЗ, а другой ВШП - отражательный, причем расстояние между центрами этих ВШП подбираются таким образом, чтобы задержка отраженного сигнала на пьезоэлектрическом звукопроводе с малым ТКЗ и на звукопроводе с большим ТКЗ при комнатной температуре были бы одинаковыми либо отличались на величину 1/(4f0), а соответствующие ВШП, расположенные на разных пьезоэлектрических звукопроводах, должны иметь одинаковую полосу пропускания.

На фиг. 1 показана топология датчика на ПАВ. Верхняя крышка условно не показана.

Датчик содержит герметичный корпус 1, в котором расположены пьезоэлектрический звукопровод 2 с большим ТКЗ и пьезоэлектрический звукопровод 3 из материала с малым ТКЗ. На пьезоэлектрическом звукопроводе 3, например из ниобата лития, расположены приемо-передающий ВШП 4, подсоединенный к антенне 5, и отражательный ВШП 6. На пьезоэлектрическом звукопроводе 3, например, из ниобата лития, расположены приемо-передающий ВШП 7, подсоединенный к антенне 5, и отражательный ВШП 8. Все ВШП имеют одинаковую полосу пропускания и выполнены, например, однонаправленными с внутренними отражателями. Датчик работает следующим образом. При подаче на приемо-предающую антенну 5 опрашивающего электромагнитного радиоимпульса он с помощью ВШП 4 и 7 преобразуется в импульсы ПАВ, которые отражаются от ВШП 6 и 8. Отраженный импульс ПАВ преобразуется в электромагнитный импульс, который излучается антенной 5. Так как отражательные ВШП 6 и 8 не нагружены, то падающие на них ПАВ почти полностью отразятся, поскольку отражательный ВШП в режиме холостого хода (отсутствие нагрузки) отражает обратно все падающие на него ПАВ.

Расстояние между центрами ВШП (l1 и l2, фиг. 1) подбираются таким образом, чтобы задержка отраженного сигнала на звукопроводе с нулевым ТКЗ, например, из кварца ST-среза, и на звукопроводе из ниобата лития были либо одинаковыми, либо отличались на величину 1/4f0 при комнатной температуре, например 20°С. При этой температуре ТКЗ ниобата лития YX/128° равен 80·10-61/град, а у кварца ST-среза равен 0 и ТКЗ пьезоэлектрического звукопровода из ниобата лития в 50-100 раз больше ТКЗ пьезоэлектрического звукопровода из кварца при других температурах. Пусть амплитуда ПАВ, отраженная от отражательного ВШП в пьезоэлектрическом звукопроводе с большим ТКЗ, равна А1, а в пьезоэлектрическом звукопроводе с малым ТКЗ равна A2. Пусть также фазы отражения ПАВ от отражательных ВШП в разных пьезоэлектрических звукопроводах одинаковы. Тогда амплитуда выходного сигнала на антенне, подсоединенной к приемо-передающим ВШП, расположенным на разных звукопроводах и соединенным параллельно, будет пропорциональна сумме амплитуд ПАВ, распространяющихся в разных пьезоэлектрических звукопроводах:

Положим, что А12=A0, тогда

Тогда суммарная амплитуда ПАВ на приемо-передающем ВШП равна A0cos[πf012)], где τ=l/VПАВ - задержка отраженного импульса в подложке, VПАВ - скорость ПАВ, l - расстояние между центрами приемо-передающего и отражательного ВШП, где τ0 - задержка сигнала при температуре 20°С, τt - задержка сигнала при произвольной температуре. Учитывая, что τt0[1+α(t-20)], получаем, что амплитуда сигнала равна A0cos[2πf0τ0α(t-20)]. Тогда при, например, f0=860 МГц, τ0=1 мкс, α=80·10-61/град и (t-20)=1°, получаем 2πf0τ0α(t-20)=0,1376π. Косинус равен нулю, когда его аргумент равен π/2, т.е. при отличии температуры от 20°С на величину Δt, Δt=π/2/0,1376π=3,63 град. Таким образом, получается, что если при некоторой температуре (в данном случае при 20°С) отраженные импульсы на разных подложках придут на приемо-передающие ВШП в фазе, то при изменении температуры на 3,63 градуса эти импульсы придут на приемо-передающие ВШП в противофазе, и наоборот, если при некоторой температуре импульсы на подложках придут в противофазе (задержка τt отличается на величину 1/(4f0)), то при изменении температуры на 3,63 градуса эти импульсы придут на приемо-передающие ВШП в фазе. Это означает, что амплитуда отраженного от такого датчика импульса будет либо много меньше амплитуды опорного импульса, либо сравнима с ней. Опорный импульс это радиоимпульс, отраженный от датчика, несущая частота f которого подбирается таким образом, что импульс имеет максимальную амплитуду при измеряемой температуре. Точность измерения температуры сводится к точности измерения амплитуд опорного и информационного импульсов и точности их сравнения. Информационный импульс - это импульс отраженный от датчика. При проведении измерений относительной амплитуды с точностью до 1%, в среднем на интервале измерения температур в 3,63 градуса точность измерения обеспечивается точностью измерения также порядка 1%, т.е. примерно 0,04 градуса.

Несущую частоту и задержку подбирают таким образом, что при некоторой известной температуре амплитуда отраженного от датчика информационного импульса была бы, например, в 100 раз меньше амплитуды опорного импульса. Тогда по мере изменения температуры амплитуда импульса будет возрастать и через 3,63 градуса она достигнет максимума; и амплитуда опорного и информационного импульсов сравняется. Зная температуру, амплитуду опорного и информационного импульсов и калибровочную кривую, компьютер определяет температуру.

Пример выполнения. Датчик содержит герметичный корпус, в котором расположены пьезоэлектрический звукопровод из YX-среза с большим ТКЗ ниобата лития и второй пьезоэлектрический звукопровод с малым ТКЗ из ST-среза кварца. ТКЗ первого звукопровода равен 80·106 1/град, а ТКЗ второго звукопровода равен нулю 1/град (в районе 20°С). На пьезоэлектрическом звукопроводе из кварца расположены однонаправленные ВШП, содержащие по 300 внутренних отражателей, а на звукопроводе из ниобата лития расположены прореженные однонаправленные ВШП, содержащие по 25 внутренних отражателей, причем длина прореженных и непрореженных ВШП одинакова, а, следовательно, одинаковы их полосы пропускания. Апертура ВШП равна 80 длин ПАВ на центральной частоте ВШП. Центральная частота f0 равна 860 МГц. Приемо-передающие ВШП, расположенные на разных подложках, электрически параллельно соединены и подсоединены к приемо-передающей антенне. Датчик настроен таким образом, что при 20°С коэффициент отражения от датчика максимален (опорный импульс), а при изменении температуры на 3,6° уменьшается в 10 раз (на 20 дБ) или на 10% при изменении температуры на 0,36°. Таким образом, чувствительность датчика значительно повышается по сравнению с прототипом, так как заметное изменение амплитуды отраженного импульса происходит при изменении температуры не на 1-2 градуса, а на 3-4 десятых долей градуса.

Источники информации

1. Малов В.В. Пьезорезонансные датчики. - М.: Энергоатомиздат, 1989, с. 215.

2. Патент RU 2387051, МПК H01L 41/107, G01D 5/12, 20.04.2010 г.

Похожие патенты RU2585487C1

название год авторы номер документа
СПОСОБ И УСТРОЙСТВО МОНИТОРИНГА ТЕМПЕРАТУРЫ НА ОСНОВЕ ПАССИВНЫХ ЛИНИЙ ЗАДЕРЖКИ НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ С ФУНКЦИЕЙ АНТИКОЛЛИЗИИ 2018
  • Калинин Владимир Анатольевич
  • Карапетьян Геворк Яковлевич
  • Кислицын Василий Олегович
RU2756413C1
ДАТЧИК ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ 2008
  • Багдасарян Александр Сергеевич
  • Багдасарян Сергей Александрович
  • Карапетьян Геворк Яковлевич
  • Днепровский Валерий Григорьевич
RU2387051C1
Бесконтактный датчик тока на поверхностных акустических волнах 2021
  • Карапетьян Геворк Яковлевич
  • Кайдашев Евгений Михайлович
RU2779616C1
ПАССИВНЫЙ БЕСПРОВОДНЫЙ ДАТЧИК НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ ДЛЯ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ МОНООКИСИ УГЛЕРОДА 2015
  • Карапетьян Геворк Яковлевич
  • Кайдашев Евгений Михайлович
  • Николаев Андрей Леонидович
  • Несветаев Дмитрий Григорьевич
  • Жилин Денис Анатольевич
RU2581570C1
УСТРОЙСТВО ИДЕНТИФИКАЦИИ НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ 2006
  • Багдасарян Сергей Александрович
  • Багдасарян Александр Сергеевич
  • Карапетьян Геворк Яковлевич
  • Нефедова Наира Александровна
RU2326405C1
ДАТЧИК НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ ДЛЯ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ МОНООКИСИ УГЛЕРОДА 2013
  • Карапетьян Геворк Яковлевич
  • Кайдашев Евгений Михайлович
  • Николаев Андрей Леонидович
  • Несветаев Дмитрий Григорьевич
  • Лянгузов Николай Владимирович
RU2550697C1
ПАССИВНЫЙ БЕСПРОВОДНЫЙ ДАТЧИК МАГНИТНОГО ПОЛЯ НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ 2018
  • Калинин Владимир Анатольевич
  • Карапетьян Геворк Яковлевич
  • Кислицын Василий Олегович
RU2758341C1
ДАТЧИК ДИСТАНЦИОННОГО КОНТРОЛЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ 2004
  • Багдасарян Александр Сергеевич
  • Багдасарян Сергей Александрович
  • Гуляев Юрий Васильевич
  • Карапетьян Геворк Яковлевич
RU2296950C2
Пассивный беспроводной датчик ультрафиолетового излучения на поверхностных акустических волнах 2018
  • Карапетьян Геворк Яковлевич
  • Кайдашев Евгений Михайлович
  • Кайдашев Владимир Евгеньевич
RU2692832C1
РАДИОМЕТКА ДЛЯ СИСТЕМ ИДЕНТИФИКАЦИИ НА ОСНОВЕ ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛН 2015
  • Багдасарян Александр Сергеевич
  • Багдасарян Сергей Александрович
  • Бутенко Валерий Владимирович
  • Николаев Валерий Иванович
  • Николаева Светлана Олеговна
RU2579522C1

Реферат патента 2016 года ПАССИВНЫЙ ДАТЧИК ТЕМПЕРАТУРЫ НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ

Изобретение относится к области измерительной техники и может быть использовано для дистанционного контроля температуры. Заявлен датчик температуры на поверхностных акустических волнах, содержащий герметичный корпус, в котором находится пьезоэлектрический звукопровод с большим температурным коэффициентом задержки (ТКЗ) порядка 10-4 1/градус. На рабочей поверхности расположены встречно-штыревые преобразователи (ВШП) с одинаковой центральной частотой f0, один из которых нагружен на приемо-передающую антенну, а другой ВШП является отражательным. Введен еще один пьезоэлектрический звукопровод с малым ТКЗ, в 50-100 раз меньшим по сравнению с ТКЗ порядка 10-4 1/градус, на котором расположены также два ВШП с той же центральной частотой f0, один из которых соединен электрически с приемо-передающей антенной параллельно с ВШП, расположенным на звукопроводе с большим ТКЗ, а другой ВШП - отражательный. Расстояние между центрами этих ВШП подбираются таким образом, чтобы задержка отраженного сигнала на пьезоэлектрическом звукопроводе с малым ТКЗ и на звукопроводе с большим ТКЗ при комнатной температуре были бы одинаковыми, либо отличались на величину 1/(4f0), а соответствующие ВШП, расположенные на разных пьезоэлектрических звукопроводах, должны иметь одинаковую полосу пропускания. Технический результат - повышение точности измерения температуры. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 585 487 C1

1. Пассивный датчик температуры на поверхностных акустических волнах, содержащий герметичный корпус, в котором находится пьезоэлектрический звукопровод с большим температурным коэффициентом задержки порядка 10-4 1/ градус, на рабочей поверхности которого расположены встречно-штыревые преобразователи с одинаковой центральной частотой ƒ0, один из которых нагружен на приемо-передающую антенну, расположенную вне герметичного корпуса, а другой встречно-штыревой преобразователь является отражательным, отличающийся тем, что в него введен еще один пьезоэлектрический звукопровод с малым температурным коэффициентом задержки, в 50-100 раз меньшим по сравнению с температурным коэффициентом задержки порядка 10-4 1/ градус, на котором расположены также два встречно-штыревых преобразователя с той же центральной частотой ƒ0, один из которых соединен электрически с приемо-передающей антенной параллельно с встречно-штыревым преобразователем, расположенным на звукопроводе с большим температурным коэффициентом задержки, а другой встречно-штыревой преобразователь - отражательный, причем расстояние между центрами встречно-штыревых преобразователей подбираются таким образом, чтобы задержка отраженного сигнала на пьезоэлектрическом звукопроводе с малым температурным коэффициентом задержки и на звукопроводе с большим температурным коэффициентом задержки были либо одинаковыми, либо отличались при комнатной температуре на величину 1/(4ƒ0), а встречно-штыревые преобразователи, расположенные на разных пьезоэлектрических звукопроводах, выполнены однонаправленными с внутренними отражателями и имеют одинаковую полосу пропускания.

2. Пассивный датчик температуры по п. 1, отличающийся тем, что пьезоэлектрический звукопровод с большим температурным коэффициентом задержки изготовлен из YX/128° - среза кристалла ниобата лития.

Документы, цитированные в отчете о поиске Патент 2016 года RU2585487C1

ДАТЧИК ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ 2008
  • Багдасарян Александр Сергеевич
  • Багдасарян Сергей Александрович
  • Карапетьян Геворк Яковлевич
  • Днепровский Валерий Григорьевич
RU2387051C1
Устройство для дистанционного измерения температуры 1980
  • Захарьящев Леонард Иванович
  • Семенченок Владимир Дмитриевич
SU1000789A1
Акустоэлектронный датчик температуры 1986
  • Сырмолотнов Иван Егорович
SU1392397A1
US 8240911 B1 , 14.08.2012
Датчик температуры 1984
  • Баржин Владимир Яковлевич
  • Милькевич Евгений Алексеевич
  • Колпаков Федор Федорович
  • Сычев Алексей Егорович
SU1234731A2
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ 2008
  • Никоненко Владимир Афанасьевич
  • Николаенко Константин Валентинович
  • Столетов Игорь Сергеевич
RU2362980C1
ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ 2012
  • Анцев Георгий Владимирович
  • Анцев Иван Георгиевич
  • Богословский Сергей Владимирович
  • Сапожников Геннадий Анатольевич
RU2494358C1
US 7285894 B1 , 23.10.2007.

RU 2 585 487 C1

Авторы

Багдасарян Александр Сергеевич

Багдасарян Сергей Александрович

Бутенко Валерий Владимирович

Карапетьян Геворк Яковлевич

Даты

2016-05-27Публикация

2015-01-19Подача