ЦЕНТРАЛИЗОВАННАЯ СИСТЕМА ПРОТИВОАВАРИЙНОЙ АВТОМАТИКИ МАГИСТРАЛЬНЫХ НЕФТЕПРОВОДОВ И НЕФТЕПРОДУКТОПРОВОДОВ Российский патент 2016 года по МПК F17D5/00 

Описание патента на изобретение RU2588330C1

Изобретение относится к нефтяной промышленности и может быть использовано на магистральных и промысловых нефтепроводах и нефтепродуктопроводах (далее - трубопроводах) в качестве централизованной системы автоматических защит от превышения давления, обеспечивающей безаварийность технологического процесса транспортировки нефти (нефтепродуктов).

В настоящее время концепция построения магистральных трубопроводов предусматривает автоматизацию только площадочных объектов: перекачивающей станции, резервуарного парка, контрольного пункта линейной части, приемосдаточного пункта. Контроль и управление работой технологического участка трубопровода осуществляется диспетчером посредством системы диспетчерского контроля и управления. При такой организации автоматические защиты локализованы и защищают конкретное технологическое оборудование, а не магистральный трубопровод в целом.

Известна система мониторинга и оценки технического состояния магистрального трубопровода [патент на изобретение RU 2451874 С1, опубл. 27.05.2012, МПК F17D 5/00], включающая набор датчиков для измерения физических параметров, влияющих на техническое состояние магистрального трубопровода, и средства для обработки измеренных физических параметров. Средства для обработки содержат блок сбора данных, блок хранения данных и расчетных моделей, блок адаптации расчетных моделей, блок вычисления обобщенных косвенных показателей и устройство отображения информации АРМ диспетчера. Выходы датчиков через блок сбора данных соединены с первым входом блока хранения данных и расчетных моделей, первый выход которого подключен к первому входу блока вычисления обобщенных косвенных показателей и ко входу блока адаптации расчетных моделей, выход которого подключен ко второму входу блока хранения данных и расчетных моделей, второй выход которого соединен со вторым входом блока вычисления обобщенных косвенных показателей, выход которого подключен к третьему входу блока хранения данных и расчетных моделей и устройству отображения информации АРМ диспетчера.

Известна также автоматизированная система защиты участков магистрального нефтепровода между нефтеперекачивающими станциями [патент на полезную модель RU 133216 U1, опубл. 10.10.2013, МПК F04D 15/00, F17D 5/00], которая содержит установленные на каждой нефтеперекачивающей станции автоматизированные программно-технические комплексы для контроля и управления насосными агрегатами станции, снабженные программируемыми логическими контроллерами. Указанные комплексы связаны между собой посредством по меньшей мере двух прямых каналов связи, а также с единым автоматизированным центром, снабженным системой диспетчерского контроля и управления объектами магистрального нефтепровода. Программно-технические комплексы выполнены с возможностью контроля и управления запорными устройствами магистрального нефтепровода.

Наиболее близким аналогом заявленного изобретения является единая система управления трубопроводной системы [патент на полезную модель RU 140620 U1, опубл. 20.05.2014, МПК F17D 5/00], которая содержит подсистему обработки информации и подсистему контроля и управления трубопроводной системы. Подсистема обработки информации составлена из блока предоставления данных, контроллера нормативных параметров, блока мониторинга, блока поддержки диспетчера и тренажера диспетчера. Подсистема контроля и управления трубопроводной системы состоит из блока диспетчера, блока управления, блока контроля сейсмических воздействий и блока обнаружения утечек. Блок предоставления данных связан блоком диспетчера, связанного с тренажером диспетчера, контроллером нормативных параметров, блоком мониторинга, блоком поддержки диспетчера, блоком управления, блоком обнаружения утечек, контролируемым пунктом линейной телемеханики и микропроцессорной системы автоматики нефтеперекачивающей станции, и блоком контроля сейсмических воздействий. Блок представления данных связан также с центральным диспетчерским пунктом и с по меньшей мере одним территориальным или резервным диспетчерским пунктом. Подсистема обработки информации и подсистема контроля и управления трубопроводной системы снабжены блоком обеспечения единого времени и блоком контроллера домена, которые связаны с блоками, входящими в состав единой системы управления трубопроводной системы.

Недостатком наиболее близкого аналога является ограниченность его функциональных возможностей по организации защит технологического участка магистрального нефтепровода.

Задачами, на решение которых направлено заявленное изобретение, являются:

- повышение уровня безопасности технологического процесса перекачки нефти (нефтепродуктов) по трубопроводам;

- автоматический контроль параметров технологического процесса перекачки нефти (нефтепродуктов) и состояния технологического оборудования магистральных трубопроводов, своевременное обнаружение развития аварийной ситуации;

- автоматический перевод магистрального нефтепровода в безопасное состояние посредством формирования команд аварийной остановки технологического участка трубопровода.

Техническим результатом заявленного изобретения является расширение функциональных возможностей по защите магистрального трубопровода от аварийных ситуаций, связанных с повышением давления, потерей герметичности или сейсмическими воздействиями более 6 баллов.

Указанный технический результат достигается, а задача решается тем, что централизованная система противоаварийной автоматики (ЦСПА) магистральных нефтепроводов и нефтепродуктопроводов представляет собой программно-технический комплекс (ПТК), содержащий сервер ЦСПА с горячим резервированием и автоматизированное рабочее место (АРМ) ЦСПА, причем ПТК выполнен с возможностью интеграции с системой диспетчерского контроля и управления (СДКУ) посредством сервера ввода-вывода СДКУ, при этом сервер ЦСПА содержит следующие алгоритмические модули: модуль связи с сервером ввода-вывода СДКУ, модуль предварительной обработки данных, модули контроля связи со смежными системами и системами автоматики магистрального трубопровода, модули алгоритмов защит и модуль связи с АРМ ЦСПА, а АРМ ЦСПА содержит следующие модули: модуль отображения отчетов, модуль отображения информации о защитах, модуль формирования настроек ЦСПА, модуль маскирования защит.

Кроме того, в сервере ЦСПА модуль связи с сервером ввода-вывода СДКУ выполнен с возможностью передачи данных в модуль предварительной обработки данных и обмена данными с модулем контроля связи со смежными системами и системами автоматики магистрального трубопровода и модулем алгоритмов защит, который, в свою очередь, выполнен с возможностью приема данных от модуля предварительной обработки данных и модуля контроля связи со смежными системами и системами автоматики магистрального трубопровода и обмена данными с модулем связи с АРМ ЦСПА, выполненным с возможностью приема данных от модуля предварительной обработки данных.

Кроме того, в АРМ ЦСПА модуль отображения информации о защитах выполнен с возможностью приема данных, а модули формирования настроек ЦСПА и маскирования защит - с возможностью обмена данными с модулем связи с АРМ ЦСПА сервера ЦСПА.

Дополнительно, ЦСПА выполнена с возможностью осуществления контроля параметров состояния магистрального трубопровода: состояния запорной арматуры на перекачивающей станции и линейной части трубопровода, состояния насосных агрегатов, состояния связи с технологическим оборудованием перекачивающей станции и линейной части, состояния контрольных пунктов линейной части всего трубопровода, а также контроля сигналов от смежных систем: системы обнаружения утечек, системы контроля режимов работы магистрального трубопровода, системы контроля сейсмических воздействий и ЦСПА смежных технологических участков.

Заявленное изобретение поясняется чертежом, на котором изображена структурная схема централизованной системы противоаварийной автоматики и обозначены следующие позиции:

1 - программно-технический комплекс ЦСПА;

2 - сервер ЦСПА;

3 - автоматизированное рабочее место ЦСПА;

4 - сервер ввода-вывода СДКУ;

5 - модуль связи с сервером ввода-вывода СДКУ;

6 - модуль предварительной обработки данных;

7 - модули контроля связи со смежными системами и системами автоматики магистрального трубопровода;

8 - модули алгоритмов защит;

9 - модуль связи с АРМ ЦСПА;

10 - модуль отображения отчетов;

11 - модуль отображения информации о защитах;

12 - модуль формирования настроек ЦСПА;

13 - модуль маскирования защит;

14 - смежные системы;

15 - система обнаружения утечек;

16 - система контроля режимов работы магистрального трубопровода;

17 - система контроля сейсмических воздействий;

18 - ЦСПА смежных технологических участков;

19 - системы автоматики магистрального трубопровода;

20 - автоматизированное рабочее место диспетчера СДКУ.

Заявленная централизованная система противоаварийной автоматики позволяет выполнять комплексный анализ параметров перекачки нефти по трубопроводу с целью своевременного обнаружения нештатных и аварийных ситуаций, а также выполняет функции автоматического управления процессом в аварийной ситуации.

Централизованная система противоаварийной автоматики строится как дополнительная система по отношению к системе диспетчерского контроля и управления (СДКУ), функционирующая в составе программно-технических средств диспетчерского пункта.

ЦСПА осуществляет контроль возникновения аварийных ситуаций в трубопроводе на основе оперативных данных, полученных от сервера ввода-вывода СДКУ 4, и при наличии аварийной ситуации выполняет автоматическую остановку технологического участка трубопровода посредством выдачи в сервер ввода-вывода СДКУ 4 команд аварийной остановки нефтеперекачивающих станций (НПС).

Автоматические защиты технологического участка ЦСПА направлены на исключение работы трубопровода на режимах с превышением допустимых давлений в линейной части и в технологических трубопроводах НПС.

Режим работы ЦСПА - автоматический. Участие оператора ЦСПА предусмотрено только во время настройки ЦСПА. Настройка ЦСПА может осуществляться лишь при отсутствии условий возникновения аварийной ситуации.

ЦСПА представляет собой программно-технический комплекс (ПТК) 1, который включает:

- сервер ЦСПА 2 (основной и резервный), который обеспечивает взаимодействие с сервером ввода-вывода СДКУ 4, исполнение алгоритмов автоматических защит. Сервер ЦСПА 2 содержит следующие алгоритмические модули: модуль связи 5 с сервером ввода-вывода СДКУ, модуль предварительной обработки данных 6, модули контроля связи 7 со смежными системами 14 и системами автоматики магистрального трубопровода 19, модули алгоритмов защит 8 нефтеперекачивающей станции (НПС) и модуль связи 9 с АРМ ЦСПА. В сервере ЦСПА 2 модуль связи 5 с сервером ввода-вывода СДКУ служит для передачи данных в модуль предварительной обработки данных 6 и обмена данными с модулем контроля связи 7 со смежными системами и системами автоматики магистрального трубопровода и модулем алгоритмов защит 8, который в свою очередь служит для приема данных от модуля предварительной обработки данных 6 и модуля контроля связи со смежными системами и системами автоматики 7 магистрального трубопровода и обмена данными с модулем связи 9 с АРМ ЦСПА, выполненным с возможностью приема данных от модуля предварительной обработки данных 6;

- автоматизированное рабочее место 3 (АРМ) ЦСПА (основное и резервное), обеспечивающее настройку ЦСПА и отображение состояния информационных сигналов о работе автоматических защит. АРМ ЦСПА 3 содержит следующие модули: модуль отображения отчетов 10, модуль отображения информации о защитах 11, модуль формирования настроек ЦСПА 12 и модуль маскирования защит 13. При этом модуль отображения информации о защитах 11 служит для приема данных, а модули формирования настроек ЦСПА 12 и маскирования защит 13 - для обмена данными с модулем связи 9 с АРМ ЦСПА сервера ЦСПА 2.

Централизованная система противоаварийной автоматики осуществляет контроль параметров состояния магистрального трубопровода: состояния запорной арматуры на перекачивающей станции и линейной части трубопровода, состояния насосных агрегатов, состояния связи с технологическим оборудованием перекачивающей станции и линейной части, состояния контрольных пунктов линейной части всего трубопровода, а также контроль состояния сигналов от смежных систем 14: системы обнаружения утечек 15, системы контроля режимов работы магистрального трубопровода 16, системы контроля сейсмических воздействий 17 и ЦСПА смежных технологических участков 18.

В ПТК ЦСПА 1 предусмотрена реализация алгоритмов автоматических защит на серверном оборудовании. Оборудование ЦСПА располагается в диспетчерском пункте. Для повышения надежности работы в составе оборудования ЦСПА предусмотрено горячее резервирование сервера ЦСПА 2.

В процессе выполнения алгоритмов защит на основе оперативной информации о технологическом процессе перекачки выполняется проверка условий возникновения аварийной ситуации и формируются информационные сигналы о наличии данных условий.

ЦСПА обеспечивает идентификацию следующих нештатных ситуаций:

- переключение запорной арматуры, установленной на линейной части и технологических трубопроводах, приводящее к угрозе перекрытия либо перекрытию потока нефти/нефтепродуктов;

- повышение давления на линейной части трубопровода выше уставок защиты или недостоверность телеизмерений давления в двух смежных точках контроля давления;

- выход технологического участка на режим перекачки с запрещенной комбинацией насосных агрегатов;

- потеря связи ЦСПА с системой автоматики нефтеперекачивающей станции;

- срабатывание общестанционной защиты на НПС с резервуарным парком, требующей остановки технологического участка;

- поступление в ЦСПА команды на аварийную остановку технологического участка, сформированной диспетчером;

- поступление в ЦСПА сигнала о негерметичности технологического участка, сформированного диспетчером, или сигнала об утечке, обнаруженной на технологическом участке системой обнаружения утечек;

- поступление в ЦСПА сигнала о несоответствии расчетных и фактических давлений (напоров), сформированного автоматической системой контроля режимов работы технологического участка на основе математической модели в режиме реального времени;

- поступление в ЦСПА сигнала о возникновении сейсмической активности, зафиксированной сейсмостанцией.

Интеграция ПТК ЦСПА 1 с СДКУ и смежными системами 14 реализована таким образом, что обмен данными с внешними по отношению к ПТК ЦСПА 1 системами (смежными системами 14 и системами автоматики магистрального трубопровода 19) не приводит к нарушению функционирования внешних систем.

Заявленная централизованная система противоаварийной автоматики работает следующим образом.

Системы автоматики магистрального трубопровода 19 проводят сбор информации о технологическом процессе перекачки нефти в магистральном трубопроводе, формирование и передачу в сервер ввода-вывода СДКУ 4 сигналов состояния магистрального трубопровода: состояния запорной арматуры на перекачивающей станции и линейной части трубопровода, состояния насосных агрегатов, состояния связи с технологическим оборудованием перекачивающей станции и линейной части, состояния контрольных пунктов линейной части всего трубопровода.

Сервер ЦСПА 2 на основе сигналов состояния магистрального трубопровода (технологических параметров и сигналов состояния технологического оборудования) и сигналов смежных систем 14: системы обнаружения утечек 15, системы контроля режимов работы магистрального трубопровода 16, системы контроля сейсмических воздействий 17 и ЦСПА смежных технологических участков 18, проводит анализ наличия аварийной ситуации. При наличии условий развития аварийной ситуации сервер ЦСПА 2 формирует сигналы защит технологического участка и команды аварийной остановки нефтеперекачивающей станции (НПС), обеспечивая тем самым перевод технологического участка в безопасное состояние.

Кроме того, сервер ЦСПА 2 обеспечивает контроль связи со смежными системами 14 и системами автоматики магистрального трубопровода 19 и при отсутствии связи свыше заданного времени также формирует сигналы защит технологического участка и переводит технологический участок в безопасное состояние.

Модуль связи 5 с сервером ввода-вывода СДКУ обеспечивает обмен сигналами между севером ввода-вывода СДКУ 4 и сервером ЦСПА 2.

Модуль предварительной обработки данных 6 при наличии недостоверностей данных, поступающих из СДКУ, формирует соответствующие информационные сигналы для отображения на АРМ ЦСПА 3.

Модули контроля связи 7 со смежными системами и системами автоматики магистрального трубопровода формируют и проводят анализ сигналов контроля связи с соответствующими смежными системами 14 и системами автоматики 19 и формирования сигналов об отсутствии связи ЦСПА с указанными системами.

Модули алгоритмов защит 8 проводят контроль условий возникновения и развития аварийных ситуаций и при наличии таких условий либо при поступлении с АРМ диспетчера СДКУ 20 команд аварийной остановки технологического участка формируют сигналы защит и передают в системы автоматики НПС через сервер ввода-вывода СДКУ 4 команды аварийной остановки НПС, а также сигналы запрета работы магистральной нефтеперекачивающей станции (МНС).

Модуль связи 9 с АРМ ЦСПА выполняет следующие операции: передачу из сервера ЦСПА 2 в АРМ ЦСПА 3 информации о работе алгоритмов защит, текущих настройках алгоритмов ЦСПА и признаков маскирования защит, а также передачу из АРМ 3 в сервер ЦСПА 2 требуемых значений настроек алгоритмов ЦСПА и команд маскирования защит ЦСПА.

При наличии какого-либо из условий возникновения аварийной ситуации в течение заданного времени формируются информационные сигналы о срабатывании соответствующего алгоритма защиты и формируются команды аварийной остановки НПС и сигналы запрета работы НПС.

При срабатывании какого-либо алгоритма защит ЦСПА формирует сигнал о срабатывания данной защиты. Данный сигнал блокируется. Наличие сигналов срабатывания защит запускает алгоритм аварийной остановки технологического участка. Деблокирование сигнала о срабатывании защиты может быть выполнено диспетчером и только после завершения процедуры аварийной остановки технологического участка и устранения имеющихся условий возникновения аварийной ситуации.

Информационные сигналы о состоянии алгоритмов защит ЦСПА, команды аварийной остановки НПС и сигналы запрета работы НПС сервер ЦСПА 2 отправляет в сервер ввода-вывода СДКУ 4 и АРМ ЦСПА 3. Команды аварийной остановки перекачивающих станций и сигналы запрета работы перекачивающих станций средствами СДКУ передаются на уровень микропроцессорной системы автоматики НПС.

При поступлении команды ЦСПА об аварийной остановке НПС микропроцессорная система автоматики НПС выполняет аварийную остановку насосных агрегатов, обеспечивающих подачу нефти/нефтепродукта в линейную часть трубопровода.

По сигналу ЦСПА о запрете работы перекачивающей станции микропроцессорная система автоматики НПС исключает запуск насосных агрегатов, обеспечивающих подачу нефти/нефтепродукта в линейную часть трубопровода.

Запрет работы НПС, установленный ЦСПА, снимается по окончании аварийной остановки технологического участка трубопровода и деблокирования диспетчером всех сработавших защит ЦСПА.

В результате использования заявленного изобретения обеспечивается расширение функциональных возможностей по защите магистрального трубопровода от аварийных ситуаций, связанных с повышением давления, потерей герметичности или сейсмическими воздействиями более 6 баллов.

Похожие патенты RU2588330C1

название год авторы номер документа
СИСТЕМА АВТОМАТИЗИРОВАННОГО УПРАВЛЕНИЯ И АВТОМАТИЧЕСКОЙ ЗАЩИТЫ МАГИСТРАЛЬНОГО ТРУБОПРОВОДА 2020
  • Кузьмин Анатолий Валерьевич
  • Трусов Вадим Александрович
  • Настепанин Павел Евгеньевич
  • Лукьяненко Максим Сергеевич
  • Евтух Константин Александрович
  • Чужинов Евгений Сергеевич
  • Савельев Александр Витальевич
RU2750479C1
Индивидуальный диспетчерский тренажер для тренинга оперативно-диспетчерского персонала магистральных нефтепроводов 2015
  • Трусов Вадим Александрович
  • Горинов Михаил Александрович
  • Хазеев Булат Шамильевич
  • Калитин Андрей Сергеевич
  • Ляпин Александр Юрьевич
  • Сарданашвили Сергей Александрович
  • Швечков Виталий Александрович
  • Южанин Виктор Владимирович
  • Халиуллин Айрат Радикович
  • Голубятников Евгений Александрович
  • Бальченко Антон Сергевич
  • Попов Руслан Владимирович
  • Бедердинов Григорий Олегович
RU2639932C2
ЕДИНАЯ СИСТЕМА УПРАВЛЕНИЯ ТРУБОПРОВОДНОЙ СИСТЕМОЙ "ВОСТОЧНАЯ СИБИРЬ - ТИХИЙ ОКЕАН - II" (ЕСУ ТС "ВСТО-II") 2013
  • Текшева Ирина Валерьевна
  • Настепанин Павел Евгеньевич
  • Горинов Михаил Александрович
  • Евтух Константин Александрович
  • Лукьяненко Максим Сергеевич
  • Савельев Александр Витальевич
  • Донской Михаил Николаевич
RU2551787C2
Мобильный запасной пункт управления, интегрированный в систему управления технологическим процессом транспортировки нефти и нефтепродуктов по магистральным трубопроводам 2018
  • Летуновский Евгений Викторович
  • Скворцов Алексей Сергеевич
RU2700464C1
АВТОМАТИЗИРОВАННАЯ СИСТЕМА КОНТРОЛЯ РАЗРЕШЕННОГО РАБОЧЕГО ДАВЛЕНИЯ В МАГИСТРАЛЬНОМ ГАЗОПРОВОДЕ 2020
  • Хабаров Андрей Александрович
RU2755406C1
Способ автоматического определения крутизны частотной характеристики изолированно работающего энергообъединения 2020
  • Андранович Богдан
  • Аюев Борис Ильич
  • Бинько Геннадий Феликсович
  • Жуков Андрей Васильевич
  • Кац Пинкус Янкелевич
  • Купчиков Тарас Вячеславович
  • Сацук Евгений Иванович
  • Черезов Андрей Владимирович
RU2722642C1
ИНТЕЛЛЕКТУАЛЬНАЯ СИСТЕМА ПОМОЩИ ПРИНЯТИЯ ДИСПЕТЧЕРСКИХ РЕШЕНИЙ ДЛЯ ТОЧНОГО ОПРЕДЕЛЕНИЯ УЧАСТКА И МЕСТА РАЗРЫВА МАГИСТРАЛЬНОГО ГАЗОПРОВОДА В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ 2019
  • Хабаров Андрей Александрович
RU2725342C1
НЕФТЕПЕРЕКАЧИВАЮЩАЯ СТАНЦИЯ БЕСПЕРЕБОЙНОЙ РАБОТЫ 2015
  • Беккер Леонид Маркович
  • Назаренко Александр Владимирович
RU2597274C1
КОМПЛЕКС ЭЛЕКТРООБОРУДОВАНИЯ СИСТЕМЫ УПРАВЛЕНИЯ И ЗАЩИТЫ ЯДЕРНЫХ РЕАКТОРОВ 2014
  • Жемчугов Георгий Александрович
  • Бойко Николай Николаевич
  • Галкина Татьяна Николаевна
  • Григорьева Гельбену Гилязовна
  • Гришанина Оксана Евгеньевна
  • Гроховская Татьяна Александровна
  • Грязнова Ирина Павловна
  • Калашников Александр Владленович
  • Куцаков Сергей Яковлевич
  • Рахматуллин Марс Мазидуллович
  • Савин Александр Кузьмич
  • Смоляр Павел Николаевич
  • Соколов Василий Анатольевич
RU2574289C2
КОМБИНИРОВАННАЯ ГИДРОАКУСТИЧЕСКАЯ СИСТЕМА ОБНАРУЖЕНИЯ УТЕЧЕК НЕФТЕПРОДУКТОПРОВОДА 2010
  • Саенко Виктор Алексеевич
  • Моисеенко Никита Викторович
  • Фазилов Ренат Рамилевич
  • Григорьев Антон Александрович
RU2462656C2

Иллюстрации к изобретению RU 2 588 330 C1

Реферат патента 2016 года ЦЕНТРАЛИЗОВАННАЯ СИСТЕМА ПРОТИВОАВАРИЙНОЙ АВТОМАТИКИ МАГИСТРАЛЬНЫХ НЕФТЕПРОВОДОВ И НЕФТЕПРОДУКТОПРОВОДОВ

Изобретение относится к нефтяной промышленности и может быть использовано на трубопроводах в качестве централизованной системы автоматических защит от превышения давления, обеспечивающей безаварийность технологического процесса транспортировки нефти (нефтепродуктов). Централизованная система противоаварийной автоматики (ЦСПА) магистральных нефтепроводов и нефтепродуктопроводов представляет собой программно-технический комплекс (ПТК), содержащий сервер ЦСПА с горячим резервированием, и автоматизированное рабочее место (АРМ) ЦСПА, причем ПТК выполнен с возможностью интеграции с системой диспетчерского контроля и управления (СДКУ) посредством сервера ввода-вывода СДКУ, при этом сервер ЦСПА и АРМ ЦСПА содержат соответствующие модули. В результате обеспечивается системная комплексная защита магистрального трубопровода от аварийных ситуаций, связанных с повышением давления, потерей герметичности или сейсмическими воздействиями более 6 баллов. 3 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 588 330 C1

1. Централизованная система противоаварийной автоматики (ЦСПА) магистральных нефтепроводов и нефтепродуктопроводов, характеризующаяся тем, что она представляет собой программно-технический комплекс (ПТК), содержащий сервер ЦСПА с горячим резервированием, и автоматизированное рабочее место (АРМ) ЦСПА, причем ПТК выполнен с возможностью интеграции с системой диспетчерского контроля и управления (СДКУ) посредством сервера ввода-вывода СДКУ, при этом сервер ЦСПА содержит следующие алгоритмические модули: модуль связи с сервером ввода-вывода СДКУ, модуль предварительной обработки данных, модули контроля связи со смежными системами и системами автоматики магистрального трубопровода, модули алгоритмов защит и модуль связи с АРМ ЦСПА, а АРМ ЦСПА содержит следующие модули: модуль отображения отчетов, модуль отображения информации о защитах, модуль формирования настроек ЦСПА, модуль маскирования защит.

2. Централизованная система противоаварийной автоматики по п. 1, характеризующаяся тем, что в сервере ЦСПА модуль связи с сервером ввода-вывода СДКУ выполнен с возможностью передачи данных в модуль предварительной обработки данных и обмена данными с модулем контроля связи со смежными системами и системами автоматики магистрального трубопровода и модулем алгоритмов защит, который в свою очередь выполнен с возможностью приема данных от модуля предварительной обработки данных и модуля контроля связи со смежными системами и системами автоматики магистрального трубопровода и обмена данными с модулем связи с АРМ ЦСПА, выполненным с возможностью приема данных от модуля предварительной обработки данных.

3. Централизованная система противоаварийной автоматики по п. 1, характеризующаяся тем, что в АРМ ЦСПА модуль отображения информации о защитах выполнен с возможностью приема данных, а модули формирования настроек ЦСПА и маскирования защит - с возможностью обмена данными с модулем связи с АРМ ЦСПА сервера ЦСПА.

4. Централизованная система противоаварийной автоматики по п. 1, характеризующаяся тем, что она выполнена с возможностью осуществления контроля параметров состояния магистрального трубопровода: состояния запорной арматуры на перекачивающей станции и линейной части трубопровода, состояния насосных агрегатов, состояния связи с технологическим оборудованием перекачивающей станции и линейной части, состояния контрольных пунктов линейной части всего трубопровода, а также контроля состояния сигналов от смежных систем: системы обнаружения утечек, системы контроля режимов работы магистрального трубопровода, системы контроля сейсмических воздействий и ЦСПА смежных технологических участков.

Документы, цитированные в отчете о поиске Патент 2016 года RU2588330C1

СПОСОБ ЭКСТРЕННОЙ ДИАГНОСТИКИ МАГИСТРАЛЬНОГО ТРУБОПРОВОДА 2008
  • Аносов Виктор Сергеевич
  • Бродский Павел Григорьевич
  • Румянцев Юрий Владимирович
  • Добротворский Александр Николаевич
  • Парамонов Александр Александрович
  • Чернявец Владимир Васильевич
RU2382270C1
Способ аэрозольной обработки закрытых помещений и сельскохозяйственных растений 1954
  • Думский В.Ф.
  • Еваленко Р.В.
  • Иванова З.В.
  • Хохлов Д.Н.
  • Южный З.М.
SU101146A1
Машина для горячего формования носка или пятки 1952
  • Воронцова Я.О.
  • Яворский С.Л.
SU97544A1

RU 2 588 330 C1

Авторы

Ревель-Муроз Павел Александрович

Кузьмин Анатолий Валерьевич

Настепанин Павел Евгеньевич

Лукьяненко Максим Сергеевич

Дрожжинов Сергей Феликсович

Евтух Константин Александрович

Кучерявый Владимир Владимирович

Чужинов Евгений Сергеевич

Морозов Роман Борисович

Даты

2016-06-27Публикация

2015-04-08Подача