НАНОСТРУКТУРНОЕ КОМПОЗИТНОЕ ПОКРЫТИЕ ИЗ ОКСИДА ЦИРКОНИЯ Российский патент 2016 года по МПК C23C4/10 C23C14/35 C01G25/02 B82B1/00 B82Y30/00 

Описание патента на изобретение RU2588619C2

Изобретение относится к области материаловедения, в частности к способам напыления теплозащитных покрытий, и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок, которые требуют формирования на рабочих поверхностях покрытий, имеющих достаточно высокое значение адгезии и когезии.

В настоящее время, при создании покрытия с заданными свойствами методом послойного напыления, образуются межфазные макроскопические границы в плоскостях, параллельных обрабатываемой поверхности и при циклических термонагрузках разница в значениях коэффициентов термического расширения может привести к расслоению покрытия и его разрушению.

Известен способ напыления теплозащитного покрытия с использованием оксида циркония, стабилизированного Y2 O3, включающий послойное нанесение покрытия на изделие, и покрытие, полученное этим способом (Патент US 6180184, С23С 4/10, 30.01.2001 - прототип).

Термобарьерное покрытие, согласно этому способу, получают из жаропрочных сплавов, стабилизированных иттрием, оксида циркония, которое послойно наносят с помощью вакуумного электронно-лучевого напыления. При этом получают покрытие, имеющее столбчатую структуру, проявляющуюся в одном или нескольких слоях.

Недостатком получаемого покрытия является возможность получения сквозной пористости, приводящей к коррозии подложки и к разрушению покрытия. Кроме этого, в процессе послойного напыления образуются межфазные границы в плоскостях, параллельных поверхности и при циклических термонагрузках разница в значениях коэффициентов термического расширения может привести к расслоению покрытия и его разрушению.

Задачей предложенного технического решения является устранение указанных недостатков и создание способа нанесения оксидного покрытия на металлическую поверхность, применение которого позволит сформировать плавный переход от металлического материала к оксидному покрытию без межфазной границы макроскопического размера.

Решение указанной задачи достигается тем, что предложенное наноструктурное композитное покрытие из оксида циркония, стабилизированного иттрием, для поверхности из никелевого сплава, полученное методом ионно-лучевого напыления на подложки и представляющее собой наноструктурный материал, согласно изобретению содержит градиентный переходной слой из градиентного нанокомпозитного материала, содержащего две фазы: металлическую фазу с составом, соответствующим составу защищаемой поверхности из никелевого сплава, и оксид циркония различной стехиометрии, причем указанный слой содержит оксид циркония при неокисленном никелевом сплаве, при этом соотношение фаз в переходном слое изменяется с возрастанием доли оксидной фазы по мере увеличения толщины пленки.

Предложенное наноструктурное композитное покрытие может быть получено следующим образом.

Для получения указанного наноструктурного композитного покрытия (далее - покрытие) используется магнетронная система с двумя магнетронами. При помощи первого магнетрона распыляют мишень, состав которой соответствует составу металлического изделия - никелевый сплав ХН71МТЮБ, а при помощи второго магнетрона распыляют мишень из циркония с добавками стабилизирующих элементов - иттрия.

Первоначальное распыление мишеней осуществляется в атмосфере аргона, причем интенсивность атомного потока, сформированного от никелевой мишени, превышает интенсивность атомного потока от циркониевой мишени. После формирования первичного сплошного металлического слоя в рабочую камеру добавляется кислород, после чего процесс напыления приобретает характер реактивного - в напыляемой пленке начинает образовываться оксид. В силу различных значений энергий связи в оксиде никеля и оксиде циркония в формирующемся покрытии происходит образование оксида циркония, в то время как никель остается неокисленным.

Таким образом, в результате одновременного распыления никелевого сплава и циркония в смешанной кислородно-аргонной атмосфере происходит напыление композитного материала металл-оксид. В процессе напыления парциальное давление кислорода плавно увеличивается до давления 1,5*10-3 Па, а мощность магнетрона, распыляющего металлический сплав, уменьшают вплоть до его полного отключения. После этого продолжают напыление чистого оксида циркония до достижения им требуемой толщины. В этом случае, в покрытии образуется переходной слой из градиентного нанокомпозитного материала, содержащего две фазы: металлическую фазу с составом, соответствующим составу защищаемой поверхности, и диэлектрическую фазу, собственно, оксид циркония различной стехиометрии, при этом соотношение фаз в переходном слое обеспечивается не постоянным, а переменным, с возрастанием доли оксидной фазы по мере увеличения толщины пленки. В результате создания такого градиентного слоя формируется плавный переход от металлического материала к оксиду без межфазной границы макроскопического размера.

В этом случае, сформированный градиентный слой является не только композитным, но и наноструктурированным, поскольку характерные размеры включений каждой фазы составляют от единиц до нескольких десятков нанометров в зависимости от объемной доли фазы.

Полученная наноструктурированность не только повышает механическую прочность покрытия, но и приводит к изотропному распределению внутренних напряжений при циклических термонагрузках, что повышает жаропрочность и жаростойкость покрытия.

Использование предложенного технического решения позволит создать наноструктурное композитное покрытие из оксида циркония, применение которого позволит сформировать плавный переход от металлического материала к оксиду без межфазной границы макроскопического размера, что, в конечном итоге, позволит повысить механическую прочность покрытия, и приведет к изотропному распределению внутренних напряжений при циклических термонагрузках, что позволит повысить жаропрочность и жаростойкость покрытия.

Похожие патенты RU2588619C2

название год авторы номер документа
Теплозащитное нанокомпозитное покрытие и способ его формирования 2014
  • Стогней Олег Владимирович
  • Валюхов Сергей Георгиевич
  • Бурыкин Валерий Евгеньевич
  • Филатов Максим Сергеевич
  • Черниченко Владимир Викторович
RU2606814C2
Способ формирования на поверхности изделия из никелевого сплава композитного покрытия 2014
  • Стогней Олег Владимирович
  • Валюхов Сергей Георгиевич
  • Бурыкин Валерий Евгеньевич
  • Филатов Максим Сергеевич
  • Черниченко Владимир Викторович
RU2607677C2
СПОСОБ ОБРАБОТКИ РАБОЧИХ ПОВЕРХНОСТЕЙ ГАЗОТУРБИННЫХ УСТАНОВОК 2014
  • Стогней Олег Владимирович
  • Валюхов Сергей Георгиевич
  • Бурыкин Валерий Евгеньевич
  • Филатов Максим Сергеевич
  • Черниченко Владимир Викторович
RU2588956C2
СПОСОБ ОБРАБОТКИ РАБОЧИХ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ЛОПАСТНЫХ МАШИН 2014
  • Стогней Олег Владимирович
  • Валюхов Сергей Георгиевич
  • Бурыкин Валерий Евгеньевич
  • Филатов Максим Сергеевич
  • Черниченко Владимир Викторович
RU2588973C2
СПОСОБ ОБРАБОТКИ РАБОЧИХ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ГАЗОТУРБИННЫХ УСТАНОВОК 2014
  • Стогней Олег Владимирович
  • Валюхов Сергей Георгиевич
  • Бурыкин Валерий Евгеньевич
  • Филатов Максим Сергеевич
  • Черниченко Владимир Викторович
RU2591024C2
Способ формирования на рабочей поверхности детали из никелевого сплава теплозащитного нанокомпозитного покрытия 2014
  • Стогней Олег Владимирович
  • Валюхов Сергей Георгиевич
  • Бурыкин Валерий Евгеньевич
  • Филатов Максим Сергеевич
  • Черниченко Владимир Викторович
RU2606826C2
Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на металлическую поверхность изделия 2014
  • Стогней Олег Владимирович
  • Валюхов Сергей Георгиевич
  • Бурыкин Валерий Евгеньевич
  • Филатов Максим Сергеевич
  • Черниченко Владимир Викторович
RU2607055C2
Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на металлическую поверхность изделия 2014
  • Стогней Олег Владимирович
  • Валюхов Сергей Георгиевич
  • Бурыкин Валерий Евгеньевич
  • Филатов Максим Сергеевич
  • Черниченко Владимир Викторович
RU2606815C2
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ ИЗ ОКСИДА ЦИРКОНИЯ НА ПОВЕРХНОСТЬ ИЗДЕЛИЯ ИЗ НИКЕЛЕВОГО СПЛАВА 2014
  • Стогней Олег Владимирович
  • Валюхов Сергей Георгиевич
  • Бурыкин Валерий Евгеньевич
  • Филатов Максим Сергеевич
  • Черниченко Владимир Викторович
RU2581546C2
СПОСОБ НАНЕСЕНИЯ КОМПОЗИТНОГО ОКСИДНОГО ПОКРЫТИЯ НА МЕТАЛЛИЧЕСКУЮ ПОВЕРХНОСТЬ 2014
  • Стогней Олег Владимирович
  • Валюхов Сергей Георгиевич
  • Бурыкин Валерий Евгеньевич
  • Филатов Максим Сергеевич
  • Черниченко Владимир Викторович
RU2591098C2

Реферат патента 2016 года НАНОСТРУКТУРНОЕ КОМПОЗИТНОЕ ПОКРЫТИЕ ИЗ ОКСИДА ЦИРКОНИЯ

Изобретение может быть использовано в производстве деталей турбинных двигателей и установок, которые требуют формирования на рабочих поверхностях покрытий, имеющих высокое значение адгезии и когезии. Наноструктурное композитное покрытие из оксида циркония, стабилизированного иттрием, наносят на поверхности из никелевого сплава методом ионно-лучевого напыления. Покрытие содержит градиентный переходной слой из градиентного нанокомпозитного материала, содержащего две фазы: металлическую фазу с составом, соответствующим составу защищаемой поверхности из никелевого сплава, и оксид циркония различной стехиометрии. Указанный слой содержит оксид циркония при неокисленном никелевом сплаве. Соотношение фаз в переходном слое изменяется с возрастанием доли оксидной фазы по мере увеличения толщины пленки. Изобретение позволяет сформировать плавный переход от металлического материала к оксиду без межфазной границы макроскопического размера.

Формула изобретения RU 2 588 619 C2

Наноструктурное композитное покрытие из оксида циркония, стабилизированного иттрием, для поверхности из никелевого сплава, полученное методом ионно-лучевого напыления на подложки и представляющее собой наноструктурный материал, отличающееся тем, что оно содержит градиентный переходной слой из градиентного нанокомпозитного материала, содержащего две фазы: металлическую фазу с составом, соответствующим составу защищаемой поверхности из никелевого сплава, и оксид циркония различной стехиометрии, причем указанный слой содержит оксид циркония при неокисленном никелевом сплаве, при этом соотношение фаз в переходном слое изменяется с возрастанием доли оксидной фазы по мере увеличения толщины пленки.

Документы, цитированные в отчете о поиске Патент 2016 года RU2588619C2

КОЛЕСО ШАССИ ЛЕТАТЕЛЬНОГО АППАРАТА С АЭРОДИНАМИЧЕСКИМ ПРИВОДОМ 2012
  • Шарыпов Валерий Николаевич
  • Шарыпов Юрий Валерьевич
RU2495793C1
US 20100015467 А1, 21.01.2010
US 20130153408 А1, 20.06.2013
СПОСОБ ПОЛУЧЕНИЯ НА ПОДЛОЖКЕ ЗАЩИТНЫХ ПОКРЫТИЙ С ГРАДИЕНТОМ ХИМИЧЕСКОГО СОСТАВА И СТРУКТУРЫ ПО ТОЛЩИНЕ С ВНЕШНИМ КЕРАМИЧЕСКИМ СЛОЕМ, ЕГО ВАРИАНТ 1997
  • Мовчан Борис Алексеевич
  • Рудой Юрий Эрнестович
  • Малашенко Игорь Сергеевич
RU2120494C1
Приспособление для перелистывания книг и т.д. 1928
  • Лященко С.Г.
SU11379A1
US 6180184 B1, 30.01.2001.

RU 2 588 619 C2

Авторы

Стогней Олег Владимирович

Валюхов Сергей Георгиевич

Бурыкин Валерий Евгеньевич

Филатов Максим Сергеевич

Черниченко Владимир Викторович

Даты

2016-07-10Публикация

2014-03-06Подача