СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ Российский патент 2016 года по МПК G01J5/00 G01J5/52 G01K15/00 

Описание патента на изобретение RU2589525C1

Изобретение относится к измерительной технике, а именно к технике измерения температуры объектов. Изобретение может быть использовано при дистанционном оперативном контроле сред с различной температурой, в том числе при криогенных температурах.

Разработанный способ может быть использован в различных сферах промышленности.

Известны способы измерения температуры (Козлов М.Г. Метрология и стандартизация: Учебник, М.:, СПб.: Изд-во «Петербургский ин-т печати», 2001. - 372 с.) на основе контактной термометрии (газовой, терморезистивной, шумовой, емкостной, магнитной), применения контактных термопар, термоиндикаторов и схем на их основе. Подобные методы, в которых используются, в частности, термопары, терморезисторы, конденсаторы в ряде случаев неэффективны в качестве дистанционных приемников, в том числе из-за того, что требуется наличие электрических проводов, соединяющих температурный датчик, находящийся в среде, с приемником сигнала.

Способ определения теплофизических характеристик материалов (Пат. РФ №2224245, опубл. 20.02.2004) с применением тепловизионной техники является неприменимым в области криогенных температур (ниже 100 K), поскольку диапазон действия современных пирометров и тепловизоров выше 243 K.

Известен способ измерения температуры (Власов А.Б. Модели и методы термографической диагностики объектов энергетики. - М.: Колос, 2006. - 280 с.), основанный на том, что прямой и обратный токи диодов изменяется при изменении температуры. Поэтому, зная функциональную зависимость величины тока от температуры полупроводникового диода, можно оценить температуру среды, в которую помещен полупроводниковый диод.

Недостатком диодных термометров с измерением прямого или обратного токов является сильная нелинейная зависимость измеряемого тока от температуры и зависимость его от величины напряжения, поданного на диод.

Известен способ дистанционного измерения температуры (Пат. РФ №2410654, опубл. 27.11.2011), в котором производят сбор и обработку излучения, выделение трех спектральных диапазонов и оценку температуры на основе обработки значений длин волн. К недостаткам способа измерения температуры на основе выделения трех спектральных диапазонов можно отнести его сложность, в т.ч. сложность математической обработки.

Известен способ дистанционного измерения температуры (Пат. РФ №2534452, опубл. 27.11.2014), заключающийся в том, что по мере изменения температуры среды измеряют длину волны излучения светоизлучающего прибора, помещенного в исследуемую среду, рассчитывают изменение длины волны и оценивают температуру по математической зависимости.

Недостатком способа является необходимость использования в качестве контролирующего элемента дорогостоящие и громоздкие устройства типа монохроматоров (спектрофотометров) для количественной оценки величины изменяющейся длины волны излучения.

Технический результат, на достижение которого направлено заявляемое изобретение, состоит в упрощении способа.

Для достижения указанного технического результата в заявляемом изобретении используют светоизлучающий прибор, в качестве которого служит полупроводниковый лазерный диод, оценивают яркость излучения от лазерного диода и рассчитывают искомую температуру среды по калибровочной градуировочной характеристике.

Таким образом, дистанционный контроль температуры производят дистанционно с помощью светоизлучающего прибора (полупроводникового лазерного диода), который выступает как датчик температуры.

Предлагаемый способ дистанционного измерения температуры иллюстрируется чертежами, представленными на фиг. 1, 2.

На фиг. 1 показана условная схема градуировки светоизлучающего полупроводникового прибора, на фиг. 2 - зависимость относительного изменения яркости δE(T) излучения лазерного диода LD630587L от температуры Т.

Сущность изобретения заключается в следующем.

Известно, что при подаче напряжения прямого смещения на светоизлучающий полупроводниковый прибор в объеме материала генерируется световое излучение за счет процессов рекомбинации основных носителей заряда в области p-n-перехода.

При уменьшении температуры полупроводникового лазера яркость Е(Т) излучения многократно возрастает, что связано с уменьшением тепловых потерь и увеличением доли энергии, расходуемой на излучение квантов света. Аналогично, увеличение температуры прибора приводит к уменьшению яркости излучения.

Яркость Е(Т) излучения прибора как излучателя при температуре Т может дистанционно контролироваться с достаточной степенью точности различными оптоэлектрическими приборами: фоторезисторами, фототранзисторами, фотодиодами и другими, имеющими известные фотоэлектрические параметры (Власов А.Б. Электроника. Часть 1. - Мурманск: МГТУ, 2009. - 157 с.).

Для использования лазерного диода в качестве дистанционного датчика температуры предварительно проводят градуировку прибора: метрологические испытания градуировочной зависимости яркости Е=f(T) и зависимости относительного изменения яркости δE(T)=E(T)/E(T0)=f(T) в исследуемом диапазоне температур.

Градуировку прибора производят способом, условная схема которого представлена на фиг. 1. Лазерный диод 1 помещают в термостат 2, температура которого может изменяться выше или ниже комнатной температуры, вплоть до температуры жидкого азота (-195°С=78 K). Через лазерный диод 1 пропускают фиксированный прямой ток I0, например I0=30 мА. При фиксированной температуре Т0, например T0=300 K измеряют значение яркости Е(Т0) (в люксах) излучения с помощью прибора 4, например люксметра, приемное устройство 3 которого расположено на фиксированном расстоянии l0 от излучающего лазерного диода (фиг. 1). Значения яркости Е(Т0), расстояние l0, ток I0, как условия калибровки, фиксированы для полупроводникового лазерного диода, используемого в качестве датчика.

По мере изменения температуры термостата, и, соответственно, лазерного диода, при зафиксированном значении прямого тока I0, протекающего через лазерный диод, производят измерение яркости Е(Т) излучения лазерного диода при различных температурах. На основе проведенных испытаний рассчитывают значения величины относительного изменения яркости δE(T) по соотношению

и строят градуировочную зависимость δЕ(7) при различных температурах.

На фиг. 2 приведена экспериментальная зависимость значений относительного изменения яркости δЕ(T)=Е(Т)/Е(300) полупроводникового лазерного диода типа LD65075TL от температуры Т термостата при фиксированном токе I0=30 мА, l0=2 см.

Видно, что уменьшение температуры Т лазерного диода приводит к увеличению яркости Е(Т) более чем в 20 раз по сравнению со значением яркости Е(Т0) при температуре T0=300 K.

Зависимость значений относительного изменения яркости δE(T) лазерного диода от температуры используют как градуировочную (калибровочную) зависимость δE(Т) для конкретного типа лазерного диода при дистанционном измерении температуры окружающей среды или объектов.

Способ осуществляется следующим образом.

Используют полупроводниковый лазерный диод, для которого определена калибровочная характеристика δE(T) относительного изменения яркости, полученной при известных значениях яркости Е(Т0) излучения при температуре Т0, фиксированном токе диода I0 и расстоянии l0 между приемным элементом люксметра и лазерным диодом. Полупроводниковый диод, как датчик для дистанционного измерения температуры, устанавливают на объект или помещают в среду, температура Тх которых измеряют дистанционно. Через лазерный диод пропускают фиксированный прямой ток I0, аналогичный току градуировки. Фиксируют яркость излучения Е(Т) лазерного диода с помощью приемного устройства люксметра, расположенного на фиксированном расстоянии l0 от лазера. По результатам испытаний рассчитывают экспериментальное значение δEэксп(Tx)=E/E(T0). Значение температуры Тх среды, в которую помещен лазерный диод, определяют по калибровочной характеристике прибора, аналогичной, представленной на фиг. 2.

Например, если в качестве датчика температуры используют лазерный диод LD63075TL с известной калибровочной зависимостью 5f(7), аналогичной представленной на фиг. 2, то при относительном изменении яркости в δEэксп=18 раз исследуемая температура среды равна Тх=-170°С=103 K.

В данном случае светоизлучающий прибор выступает как датчик температуры, физические параметры которого изменяются при изменении температуры среды.

Похожие патенты RU2589525C1

название год авторы номер документа
Способ измерения теплового сопротивления переход-корпус светодиода 2021
  • Сергеев Вячеслав Андреевич
  • Фролов Илья Владимирович
  • Радаев Олег Александрович
  • Зайцев Сергей Александрович
  • Козликова Ирина Сергеевна
RU2772930C1
СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ СРЕДЫ 2013
  • Власов Анатолий Борисович
  • Деревянкин Павел Геннадьевич
RU2534452C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПЕРЕХОДНЫХ ТЕПЛОВЫХ ХАРАКТЕРИСТИК СВЕТОИЗЛУЧАЮЩИХ ДИОДОВ 2013
  • Сергеев Вячеслав Андреевич
  • Черторийский Алексей Аркадьевич
  • Беринцев Алексей Валентинович
RU2523731C1
УСТРОЙСТВО ДИСТАНЦИОННОГО БЕСКОНТАКТНОГО ПИРОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ЯРКОСТНОЙ ТЕМПЕРАТУРЫ 2005
  • Безрядин Николай Николаевич
  • Бутусов Игорь Юрьевич
  • Зон Борис Абрамович
  • Линник Вячеслав Дмитриевич
  • Наскидашвили Василий Иванович
RU2287785C2
ЭКСПРЕСС-МЕТОД ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС СИЛОВЫХ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ В КОРПУСНОМ ИСПОЛНЕНИИ 2003
  • Флоренцев С.Н.
  • Гарцбейн Валерий Михайлович
  • Иванов С.В.
  • Марамыгин Н.Ф.
  • Романовская Л.В.
RU2240573C1
БЕСКОНТАКТНЫЙ ИЗМЕРИТЕЛЬ РАССТОЯНИЙ 1996
  • Дукаревич Юрий Ефимович
  • Дукаревич Михаил Юрьевич
RU2124700C1
СПОСОБ ДЕТЕКТИРОВАНИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН В ТЕРАГЕРЦОВОМ ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Китаева Галия Хасановна
  • Пенин Александр Николаевич
  • Тучак Антон Николаевич
  • Якунин Павел Владимирович
RU2448399C2
Устройство для измерения концентрации вещества,связанного с основным материалом 1985
  • Сукач Георгий Алексеевич
SU1260692A1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ АКТИВНОЙ ОБЛАСТИ СВЕТОДИОДА 2011
  • Пихтин Александр Николаевич
  • Тарасов Сергей Анатольевич
  • Менькович Екатерина Андреевна
RU2473149C1
УСТРОЙСТВО ДЛЯ ИССЛЕДОВАНИЯ ХАРАКТЕРИСТИК ИОННОГО ПОТОКА ПЛАЗМЫ, СОЗДАВАЕМОЙ ИМПУЛЬСНЫМ ИСТОЧНИКОМ, В ЧАСТНОСТИ COЛАЗЕРОМ 2017
  • Сатов Юрий Алексеевич
  • Шумшуров Александр Викторович
  • Лосев Антон Андреевич
  • Васильев Андрей Алексеевич
RU2649914C1

Иллюстрации к изобретению RU 2 589 525 C1

Реферат патента 2016 года СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ

Изобретение относится к измерительной технике и может быть использовано для дистанционного измерения температуры среды или объектов в различных сферах промышленности, в том числе при криогенных температурах. Согласно заявленному изобретению используют полупроводниковый лазерный диод. Помещают его в среду или устанавливают на объект для измерения их температуры. Наблюдают за излучением светоизлучающего прибора. Определяют значения яркости Е(Т0) излучения при исходной температуре T0 и яркости Е(Tx) излучения при температуре Тх среды, и по калибровочной (градуировочной) зависимости δE(T)=Е(Т)/Е(Т0) оценивают температуру Тх среды. Технический результат - упрощение способа дистанционного определения температуры среды. 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 589 525 C1

1. Способ дистанционного измерения температуры, основанный на использовании светоизлучающего полупроводникового прибора в качестве дистанционного датчика температуры, характеризующийся тем, что предварительно проводят метрологические испытания калибровочной зависимости яркости Е=f(T) и зависимости относительного изменения яркости δE(T)=Е(Т)/Е(Т0)=f(T) светоизлучающего прибора в исследуемом диапазоне температур, для этого светоизлучающий полупроводниковый прибор помещают в термостат и пропускают через него фиксированный прямой ток I0 при фиксированной температуре Т0, измеряют значения яркости Е(Т0) при температуре Т0 и Е(Т) при различных температурах с помощью люксметра, приемное устройство которого устанавливают на фиксированном расстоянии l0 от светоизлучающего прибора, на основе полученных данных рассчитывают значения величин относительного изменения яркости δE(Т) по формуле δЕ(Т)=Е(Т)/Е(Т0) и строят калибровочную зависимость δЕ(Т) при различных температурах, которую затем используют для определения искомой температуры Тх среды или объекта, для этого светоизлучающий прибор помещают в среду или устанавливают на объект, пропускают через прибор фиксированный прямой ток I0, фиксируют яркость излучения Е(Т) с помощью установленного на фиксированном расстоянии l0 приемного устройства люксметра, рассчитывают экспериментальные значения δEэксп(Tx)=Е(Тх)/Е(Т0) светоизлучающего прибора и определяют искомую температуру среды или объекта Тх по калибровочной зависимости.

2. Способ по п. 1, отличающийся тем, что в качестве светоизлучающего прибора используют лазерный диод.

Документы, цитированные в отчете о поиске Патент 2016 года RU2589525C1

СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ СРЕДЫ 2013
  • Власов Анатолий Борисович
  • Деревянкин Павел Геннадьевич
RU2534452C1
СПОСОБ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ 1998
  • Дворецкий С.А.
  • Дулин С.А.
  • Михайлов Н.Н.
  • Рыхлицкий С.В.
  • Сидоров Ю.Г.
RU2149366C1
US 8274644 B2 , 25.09.2012
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ 2009
  • Тымкул Василий Михайлович
  • Тымкул Любовь Васильевна
  • Фесько Юрий Александрович
  • Шелковой Денис Сергеевич
RU2410654C1
СПОСОБ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ ЯРКОСТНОЙ ТЕМПЕРАТУРЫ ТЕПЛОВОГО ПОЛЯ ИССЛЕДУЕМОГО ОБЪЕКТА 2014
  • Цыганов Вячеслав Александрович
  • Лобастов Сергей Александрович
  • Базаров Юрий Борисович
RU2552599C1
СПОСОБ ИЗМЕРЕНИЯ ЯРКОСТНОЙ ТЕМПЕРАТУРЫ ОБЪЕКТА 2007
  • Кузнецов Александр Владимирович
RU2338166C1

RU 2 589 525 C1

Авторы

Власов Анатолий Борисович

Кореннов Михаил Михайлович

Даты

2016-07-10Публикация

2015-04-27Подача