Область техники
Изобретение относится к области энергетики, а именно к области использования солнечной энергии, и может быть применено в солнечных коллекторах с использованием энергии солнечного излучения в качестве источника теплового излучения.
Уровень техники
Известен солнечный коллектор, содержащий корпус, в верхней части которого расположен однокамерный стеклопакет, обращенный к солнечному излучению со слоем напыленного серебра на одной из поверхностей стекла стеклопакета, а в нижней части корпуса - теплоизоляция с расположенным на ее поверхности теплоотражающем слое. При этом между стеклопакетом и изоляцией образовано пространство, в которое вставлен змеевик, необходимый для протекания в нем теплоносителя (RU 2471129 С1, 27.12.2012).
Недостатками известной установки являются потери тепла при нагревании змеевика и рабочей жидкости, высокая стоимость конструкции.
Наиболее близким аналогом заявленного изобретения является солнечный коллектор, раскрытый в RU 27195 U1, 10.01.2003.
Коллектор содержит полый корпус из теплоизоляционного материала, заполненный теплоносителем. В верхней части корпуса расположено светопрозрачное окно, обращенное к солнечному излучению. При этом светопрозрачное окно выполнено в виде двух стекол, с образованием зазора между ними, образующего замкнутый объем, откаченный до вакуума. В нижней части корпуса расположен светопоглощающий приемник.
Недостатками наиболее близкого аналога являются потери тепла через теплоизоляцию в нижней части коллектора, уменьшенная площадь светопрозрачного окна по сравнению с общей площадью коллектора, что снижает общее количество получаемой коллектором солнечной инсоляции.
Раскрытие изобретения
Задача предлагаемого технического решения состоит в разработке солнечного коллектора, собирающего солнечное излучение со всей поверхности и отдающего тепло рабочему телу (теплоносителю) с максимальной эффективностью.
Техническим результатом изобретения является снижение теплопотерь и увеличение эффективности преобразования солнечной энергии.
Данный технический результат достигается за счет того, что солнечный коллектор включает корпус, выполненный из двух, по крайней мере, однокамерных стеклопакетов, соединенных герметичной рамкой, выполненной с возможностью образовывать заполненное высокотемпературным теплоносителем герметичное пространство между стеклопакетами с узлом подачи холодного высокотемпературного теплоносителя и узлом выхода нагретого высокотемпературного теплоносителя, при этом стеклопакеты выполнены вакуумными.
В качестве высокотемпературного теплоносителя применены минеральные масла или высокотемпературные расплавы солей.
Высокотемпературный теплоноситель содержит добавку в виде углеродных нанотрубок в количестве 0,1-1 об.%.
Расстояние в камере стеклопакетов между стеклами составляет 50 мкм.
Расстояние герметичного пространства между стеклопакетами составляет 2 мм.
Одно стекло, взаимодействующее с теплоносителем, стеклопакета, обращенного к солнечному излучению, является низкоэммисионным.
Одно стекло, взаимодействующее с теплоносителем, другого стеклопакета содержит зеркальный слой, нанесенного на поверхность стекла, обращенную к вакууму.
В качестве низкоэммисионного стекла применены К-, I-стекла.
Краткое описание чертежей
Фиг. 1 - Солнечный коллектор, содержащий однокамерные вакуумные стеклопакеты:
1 - солнечное излучение;
2 - первый стеклопакет, обращенный к солнечному излучению;
3 - второй стеклопакет, расположенный под первым;
4 - герметичное пространство, заполненное высокотемпературным теплоносителем;
5 - узел подачи высокотемпературного теплоносителя;
6 - узел выхода высокотемпературного теплоносителя;
7 - стекло с низкоэммисионным покрытием;
8 - стекло с зеркальным покрытием.
Осуществление изобретения
На фиг. 1 изображен солнечный коллектор, включающий корпус, выполненный из двух однокамерных стеклопакетов (2, 3), соединенных герметичной рамкой, выполненной с возможностью образовывать заполненное высокотемпературным теплоносителем герметичное пространство (4) между стеклопакетами (2, 3) с узлом подачи (5) высокотемпературного теплоносителя и узлом выхода (6) высокотемпературного теплоносителя, при этом стеклопакеты (2, 3) выполнены вакуумными, т.е. с возможностью создания в камере между стеклами замкнутого объема, из которого откачивают воздух.
В качестве высокотемпературного теплоносителя применены минеральные масла на основе алкилнафтеновых и алкилароматических углеводородов или высокотемпературные расплавы солей, например смесь высокотемпературных расплавов KNO3 и NaNO3.
Высокотемпературный теплоноситель содержит добавку в виде углеродных нанотрубок в количестве 0,1-1 об.%.
Расстояние в камере стеклопакетов (2, 3) между стеклами составляет 50 мкм. Расстояние между стеклами в стеклопакете является минимальной величиной, которая экспериментально подобрана, обеспечивающей эффективность теплоизоляции, что обеспечивает снижение теплопотерь и увеличение эффективности преобразования солнечной энергии. Расстояния между стеклами в стеклопакетах может достигать 150 мкм. Увеличение расстояния между стеклами стеклопакетов более 150 мкм невозможно из-за технологических особенностей изготовления стеклопакетов.
Расстояние герметичного пространства между стеклопакетами (2, 3) составляет 2 мм. Расстояние между стеклопакетами является минимальной величиной, которая экспериментально подобрана, обеспечивающей равномерность прогрева высокотемпературного теплоносителя, что обеспечивает увеличение эффективности преобразования солнечной энергии. Расстояния между стеклопакетами может достигать 5 мм. Увеличение расстояния между стеклопакетами более 5 мм нецелесообразно, так как приведет к увеличению массы рабочего тела, приводящей к усилению нагрузки на несущие конструкции.
Одно стекло (7), взаимодействующее с теплоносителем, стеклопакета (2), обращенного к солнечному излучению, является низкоэммисионным.
Одно стекло (8), взаимодействующее с теплоносителем, другого стеклопакета содержит зеркальный слой, нанесенный на поверхность стекла, обращенную к вакууму.
В качестве низкоэммисионного стекла применены К-, I-стекла.
Устройство работает следующим образом. «Холодный» высокотемпературный теплоноситель подается по трубопроводу (на фиг. 1 не показан) на вход в узел подачи (5) высокотемпературного теплоносителя. Затем он попадает в герметичное пространство (4) коллектора, в котором теплоноситель течет к узлу выхода высокотемпературного теплоносителя, нагреваясь на протяжении всего герметичного пространства (4) от узла подачи (5) высокотемпературного теплоносителя до узла (6) выхода высокотемпературного теплоносителя от солнечного изучения (1), проходящего через стеклопакет (2). Затем горячий теплоноситель выходит из узла (6) выхода высокотемпературного теплоносителя и по трубопроводу попадает в парогенератор (на фиг. 1 не показан), где он охлаждается, а затем по трубопроводу вновь поступает на узел подачи (5) высокотемпературного теплоносителя. Таким образом за счет того, что высокотемпературный теплоноситель нагревается по всей поверхности герметичного пространства (4), происходит увеличение эффективности (кпд) преобразования солнечной энергии, а стеклопакеты (2, 3) за счет камер, откаченных до вакуума, обеспечивают снижение теплопотерь в высокотемпературном теплоносителе.
Для повышения степени поглощения солнечной инсоляции высокотемпературный теплоноситель содержит добавку в виде углеродных нанотрубок диаметром 10-50 нм и длинной 70-100 нм в количестве 0,1-1 об.%. При содержании нанотрубок менее 0,1% степень поглощения солнечной инсоляции будет низка, а при содержании нанотрубок более 1% приведет к значительному удорожанию теплоносителя.
Кроме того, для снижения теплопотерь и повышения степени поглощения солнечной инсоляции, одно стекло (7), взаимодействующее с теплоносителем, стеклопакета (2), обращенного к солнечному излучению, является низкоэммисионным, которое пропускает солнечное излучение и отражает тепло от нагретого высокотемпературного теплоносителя, а одно стекло (8), взаимодействующее с теплоносителем, другого стеклопакета содержит зеркальный слой, нанесенный на поверхность стекла, обращенную к вакууму, который отражает тепло от нагретого высокотемпературного теплоносителя.
Таким образом, предлагаемое изобретение позволяет получить солнечный коллектор, обеспечивающий снижение теплопотерь и увеличение эффективности преобразования солнечной энергии.
Изобретение было раскрыто выше со ссылкой на конкретный вариант его осуществления. Для специалистов могут быть очевидны и иные варианты осуществления изобретения, не меняющие его сущности, как она раскрыта в настоящем описании. Соответственно, изобретение следует считать ограниченным по объему только нижеследующей формулой изобретения.
название | год | авторы | номер документа |
---|---|---|---|
СОЛНЕЧНЫЙ КОЛЛЕКТОР | 2017 |
|
RU2652472C1 |
ЭНЕРГОЭФФЕКТИВНАЯ СВЕТОПРОЗРАЧНАЯ КОНСТРУКЦИЯ | 2016 |
|
RU2620241C1 |
СОЛНЕЧНАЯ ВОДОНАГРЕВАТЕЛЬНАЯ УСТАНОВКА | 2004 |
|
RU2262045C1 |
СОЛНЕЧНЫЙ КОЛЛЕКТОР С КОНЦЕНТРАТОРОМ ДЛЯ ГЕЛИОВОДОПОДОГРЕВА | 2013 |
|
RU2550289C1 |
Модульное здание с повышенными потребительскими свойствами | 2015 |
|
RU2630317C2 |
СОЛНЕЧНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 2015 |
|
RU2586034C1 |
ГИБРИДНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ | 2013 |
|
RU2546332C1 |
СОЛНЕЧНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 2014 |
|
RU2559093C1 |
Светопрозрачная конструкция (варианты) | 2018 |
|
RU2694537C1 |
ДОПОЛНИТЕЛЬНАЯ ТЕПЛОСБЕРЕГАЮЩАЯ СЪЕМНАЯ НАКЛАДКА ОКНА | 2012 |
|
RU2525777C2 |
Изобретение относится к области энергетики, а именно к области использования солнечной энергии, и может быть применено в солнечных коллекторах с использованием энергии солнечного излучения в качестве источника теплового излучения. Солнечный коллектор включает корпус, выполненный из двух, по крайней мере, однокамерных стеклопакетов, соединенных герметичной рамкой. Рамка выполнена с возможностью образовывать заполненное высокотемпературным теплоносителем герметичное пространство между стеклопакетами с узлом подачи высокотемпературного теплоносителя и узлом выхода высокотемпературного теплоносителя. При этом стеклопакеты выполнены вакуумными, а расстояние герметичного пространства между стеклопакетами составляет 2 мм. Техническим результатом изобретения является снижение теплопотерь и увеличение эффективности преобразования солнечной энергии. 6 з.п. ф-лы, 1 ил.
1. Солнечный коллектор, включающий корпус, выполненный из двух, по крайней мере, однокамерных стеклопакетов, соединенных герметичной рамкой, выполненной с возможностью образовывать заполненное высокотемпературным теплоносителем герметичное пространство между стеклопакетами с узлом подачи высокотемпературного теплоносителя и узлом выхода высокотемпературного теплоносителя, при этом стеклопакеты выполнены вакуумными, а расстояние герметичного пространства между стеклопакетами составляет 2 мм.
2. Коллектор по п. 1, отличающийся тем, что в качестве высокотемпературного теплоносителя применены минеральные масла, высокотемпературные расплавы солей.
3. Коллектор по п. 1, отличающийся тем, что расстояние в камере стеклопакетов между стеклами составляет 50 мкм.
4. Коллектор по п. 1, отличающийся тем, что высокотемпературный теплоноситель содержит добавку в виде углеродных нанотрубок в количестве 0,1-1 об.%.
5. Коллектор по п. 1, отличающийся тем, что одно стекло, взаимодействующее с теплоносителем, стеклопакета, обращенного к солнечному излучению, является низкоэммисионным.
6. Коллектор по п. 1, отличающийся тем, что одно стекло, взаимодействующее с теплоносителем, другого стеклопакета содержит зеркальный слой, нанесенный на поверхность стекла, обращенную к вакууму.
7. Коллектор по п. 6, отличающийся тем, что в качестве низкоэммисионного стекла применены К-, I-стекла.
Печь камерного типа для дистилляции цинка | 1930 |
|
SU27195A1 |
DE 20320220 U1, 18.03.2004 | |||
СОЛНЕЧНЫЙ НАГРЕВАТЕЛЬ ЖИДКОСТИ | 0 |
|
SU282819A1 |
Дорожная спиртовая кухня | 1918 |
|
SU98A1 |
СОЛНЕЧНАЯ ПАНЕЛЬ | 1996 |
|
RU2113661C1 |
Авторы
Даты
2016-07-10—Публикация
2014-09-18—Подача