Изобретение относится к области подземного хранения природного газа (метана) и может быть использовано в газодобывающей и нефтяной промышленности.
Известны способы (патент РФ №1466159, кл. B65G 5/00, 1995 г.), включающие бурение эксплуатационных скважин, закачку объемов газа в подземные пустоты с последующей его откачкой.
Известны также способы (патент РФ №2085456, кл. B65G 5/00, 1997 г.) безопасной эксплуатации подземного хранилища газа (ПХГ), включающие его закачку через скважину, хранение в хранилище и отбор газа.
Общими недостатками известных способов являются возможности утечки природного газа из-за негерметичности технологического оборудования и толщин перекрывающих пород, в результате чего загрязняется атмосфера, создаются скопления взрывоопасных концентраций природного газа в приземной атмосфере, усиливается парниковый эффект. Размеры утечек обусловлены как геолого-физическими условиями ПХГ, так и динамическими условиями эксплуатации и техническим состоянием скважин.
Техническим результатом предлагаемого способа является обеспечение экологической безопасности подземного хранения газа за счет предупреждения и предотвращения создания взрывоопасных концентраций газа в приземной атмосфере, снижения поступления метана в атмосферу, исключения дополнительного парникового эффекта.
Такой технический результат достигается тем, что способ обеспечения экологической безопасности подземного хранилища газа, включающий его закачку через скважину, хранение и отбор газа из хранилища, при этом в зонах подземного размещения природного газа осуществляют дистанционный экологический мониторинг содержания метана в приземной атмосфере, а также непрерывный контроль концентрации метана в зонах технологических узлов, после чего осуществляют прогнозирование опасности возникновения критических по концентрации газа зон, по результатам которого в зонах с повышенной концентрацией метана в приземной атмосфере грунт обрабатывают суспензией метанотрофных бактерий в солевом растворе, а в технологических узлах таких критических зон дополнительно создают возвышения из почв, в которые циклически закачивают под определенными давлением и температурой суспензии метанотрофных бактерий в солевом растворе. К тому же дистанционный экологический мониторинг содержания метана в приземной атмосфере проводят в реальном времени с использованием датчиков, например ультразвуковых, лазерных или инфракрасных газоанализаторов, а непрерывный контроль содержания метана в зонах технологических узлов проводят с использованием измерительных преобразователей, например термоанемометров, детекторов газа, течеискателей, газовых счетчиков или термохимических датчиков. При этом прогнозирование опасности возникновения критических по содержанию газа зон осуществляют по величине изменения скорости газовыделения во времени, а солевой раствор включает: 2 кг/м3 NH4Cl; 0,5 кг/м3 KH2PO4; 0,2 кг/м3 MgSO4; 0,001 кг/м3 CuSO4, при этом рабочая концентрация метанотрофных бактерий составляет 5…10 кг/м3. Также в воротники из почв циклически закачивают под давлением до 100 МПа, при температуре 5…37°C, суспензии метанотрофных бактерий.
Предлагаемый способ осуществляется следующим образом. После закачки газа посредством скважины в ПХГ осуществляют хранение и, при необходимости, отбор газа их ПХГ. При этом в реальных условиях эксплуатации ПХГ возможны различные утечки газа вследствие неоднородности покрышки его хранилища, особенностей подземной гидродинамики и геохимии, негерметичности колонных оголовков, дефектов эксплуатационных колонн, отклонений от технологических режимов и пр.1 (1Книга “Герметичность объектов подземного хранения природного газа по данным почвенно-экологического мониторинга” (авторы Э.Б. Бухгалтер, Б.О. Будников, Н.В. Можарова, С.А. Кулачкова). Изд-во: Москва, МГУ им. М.В. Ломоносова). Такие утечки газа могут достигать взрывоопасных уровней. Для обеспечения экологической безопасности подземного хранения газа, снижения поступления метана в атмосферу, а также исключения парникового эффекта в зонах подземного размещения природного газа осуществляют непрерывно дистанционный экологический мониторинг содержания метана в приземной атмосфере, а также непрерывный контроль концентрации метана в зонах технологических узлов. При этом дистанционный экологический мониторинг содержания метана в приземной атмосфере проводят в реальном времени с использованием датчиков, например ультразвуковых, лазерных или инфракрасных газоанализаторов, а непрерывный контроль содержания метана в зонах технологических узлов проводят с использованием измерительных преобразователей, например термоанемометров, детекторов газа, течеискателей, газовых счетчиков или термохимических датчиков. По результатам дистанционного экологического мониторинга содержания метана в приземной атмосфере, а также непрерывного контроля концентрации метана в зонах технологических узлов по величине изменения скорости газовыделения во времени осуществляют прогнозирование опасности возникновения повышенной эмиссии метана, а также критических по содержанию газа зон. На основании результатов такого экологического мониторинга и прогноза содержания метана (в конкретном ПХГ) выявляют зоны (в приземной атмосфере), в которые на глубину (до 1 метра) грунта закачивается под давлением до 100 мПа суспензия (биосуспензия), содержащая метанотрофные бактерии в солевом растворе для поддержания их жизнедеятельности. Солевой раствор имеет состав: 2 кг/м3 NH4Cl; 0,5 кг/м3 KH2PO4; 0,2 кг/м3 MgSO4; 0,001 кг/м3 CuSO4. Рабочая концентрация метанотрофных бактерий 5…10 кг/м3. В качестве метанотрофных бактерий (метанотрофов) применяют грамотрицательные бактерии, способные использовать метан в качестве источника углерода и энергии в аэробных и микроаэрофильных условиях в широком диапазоне температур от 5 до 37°C (мезофильные штаммы при 25…37°C, а психрофильные штаммы - при 5…21°C; диапазон рабочей концентрации метана 0,5…99,5%; оптимальная концентрация кислорода в среде 15…45%; при этом из 1 моля метана получается до 23 кг сухой массы метанотрофных бактерий).
В случаях превышения концентрации метана в зонах технологических узлов, дополнительно (для большей эффективности улавливания метана) создают грунтовые «воротники» (возвышения) из почв, пропитанных суспензией метанотрофных бактерий. Их продукты метаболизма при этом создают дополнительное уплотнение грунта и способствуют снижению эмиссии метана. К тому же в такие грунтовые «воротники» циклически закачивают под давлением до 100 МПа и температурой от 5 до 37°C суспензии метанотрофных бактерий в солевом растворе.
Предлагаемый способ обеспечивает экологическую безопасность подземного хранения газа, снижение поступления метана в атмосферу, а также исключение парникового эффекта. В период нарушения технологического режима (аварии) он также способствует снижению остроты экологической ситуации.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ СОЗДАНИЯ ПОДЗЕМНОГО ХРАНИЛИЩА ГАЗА В ГЕОЛОГИЧЕСКИХ СТРУКТУРАХ, ЗАПОЛНЕННЫХ ГАЗОМ | 2011 |
|
RU2458838C1 |
СПОСОБ ОБРАБОТКИ РЕКУЛЬТИВИРУЕМЫХ ПОЛИГОНОВ ТВЕРДЫХ БЫТОВЫХ ОТХОДОВ И СВАЛОК | 2005 |
|
RU2297888C2 |
СПОСОБ СОЗДАНИЯ МАЛОПРОНИЦАЕМОГО ЭКРАНА В ПОРИСТОЙ СРЕДЕ | 2009 |
|
RU2386805C1 |
Способ эксплуатации подземного хранилища природного газа | 2015 |
|
RU2615198C1 |
Топливно-энергетическая система с низким углеродным следом | 2021 |
|
RU2776579C1 |
СПОСОБ СОЗДАНИЯ МАЛОПРОНИЦАЕМОГО КРИВОЛИНЕЙНОГО ЭКРАНА В ПОРИСТОЙ СРЕДЕ ПРИ ПОДЗЕМНОМ ХРАНЕНИИ ГАЗА | 2016 |
|
RU2645053C2 |
СПОСОБ СОЗДАНИЯ МАЛОПРОНИЦАЕМОГО ЭКРАНА В ПОРИСТОЙ СРЕДЕ ПРИ ПОДЗЕМНОМ ХРАНЕНИИ ГАЗА | 2011 |
|
RU2483012C1 |
Способ создания подземного хранилища газа в водоносном пласте-коллекторе | 2023 |
|
RU2818282C1 |
Способ создания и эксплуатации подземного хранилища газа в водоносной геологической структуре | 2021 |
|
RU2770028C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКИХ ПРОЦЕССОВ В ГАЗОВОЙ СРЕДЕ | 2004 |
|
RU2256793C1 |
Изобретение относится к области подземного хранения газа и может быть использовано в газодобывающей и нефтяной промышленности. Способ обеспечения экологической безопасности подземного хранилища газа включает его закачку через скважину, хранение и отбор газа из хранилища, при этом в зонах подземного размещения природного газа осуществляют дистанционный экологический мониторинг содержания метана в приземной атмосфере, а также непрерывный контроль концентрации метана в зонах технологических узлов. После этого осуществляют прогнозирование опасности возникновения критических по концентрации газа зон, по результатам которого в зонах с повышенной концентрацией метана в приземной атмосфере грунт обрабатывают суспензией метанотрофных бактерий в солевом растворе, а в технологических узлах таких критических зон дополнительно создают возвышения из почв, в которые циклически закачивают под определенными давлением и температурой суспензии метанотрофных бактерий в солевом растворе. Способ обеспечивает экологическую безопасность подземного хранения газа, снижение поступления метана в атмосферу, а также исключение парникового эффекта. В период нарушения технологического режима (аварии) он также способствует снижению остроты экологической ситуации. 6 з.п. ф-лы.
1. Способ обеспечения экологической безопасности подземного хранилища газа, включающий его закачку через скважину, хранение и отбор газа из хранилища, отличающийся тем, что в зонах подземного размещения природного газа осуществляют дистанционный экологический мониторинг содержания метана в приземной атмосфере, а также непрерывный контроль концентрации метана в зонах технологических узлов, после чего осуществляют прогнозирование опасности возникновения критических по концентрации газа зон, по результатам которого в зонах с повышенной концентрацией метана в приземной атмосфере, грунт обрабатывают суспензией метанотрофных бактерий в солевом растворе, а в технологических узлах таких критических зон дополнительно создают возвышения из почв, в которые циклически закачивают под определенными давлением и температурой суспензии метанотрофных бактерий в солевом растворе.
2. Способ по п. 1, отличающийся тем, что дистанционный экологический мониторинг содержания метана в приземной атмосфере проводят в реальном времени с использованием датчиков, например ультразвуковых, лазерных или инфракрасных газоанализаторов.
3. Способ по п. 1, отличающийся тем, что непрерывный контроль содержания метана в зонах технологических узлов проводят с использованием измерительных преобразователей, например термоанемометров, детекторов газа, течеискателей, газовых счетчиков или термохимических датчиков.
4. Способ по п. 1, отличающийся тем, что прогнозирование опасности возникновения критических по содержанию газа зон осуществляют по величине изменения скорости газовыделения во времени.
5. Способ по п. 1, отличающийся тем, что солевой раствор включает: 2 кг/м3 NH4Cl; 0,5 кг/м3 KH2PO4; 0,2 кг/м3 MgSO4; 0,001 кг/м3 CuSO4, при этом рабочая концентрация метанотрофных бактерий составляет 5…10 кг/м3.
6. Способ по п. 1, отличающийся тем, что в возвышения из почв циклически закачивают под давлением до 100 МПа суспензии метанотрофных бактерий.
7. Способ по п. 1, отличающийся тем, что в возвышения из почв циклически закачивают при температуре 5…37°C суспензии метанотрофных бактерий.
СПОСОБ ЭКСПЛУАТАЦИИ ПОДЗЕМНОГО ХРАНИЛИЩА УГЛЕВОДОРОДОВ | 1994 |
|
RU2085456C1 |
СПОСОБ СОЗДАНИЯ ПОДЗЕМНОГО ХРАНИЛИЩА В ИСТОЩЕННЫХ МНОГОПЛАСТОВЫХ МЕСТОРОЖДЕНИЯХ | 1987 |
|
SU1475097A1 |
ПОДЗЕМНОЕ ХРАНИЛИЩЕ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА (ПХ СПГ) | 2010 |
|
RU2431770C1 |
Способ эксплуатации подземного хранилища и установка для его осуществления | 1989 |
|
SU1720945A1 |
WO 1990006480 A1,14.06.1990. |
Авторы
Даты
2016-07-10—Публикация
2014-03-06—Подача