СПОСОБ ЗАХОРОНЕНИЯ ТВЕРДЫХ РАДИОАКТИВНЫХ ОТХОДОВ Российский патент 2016 года по МПК G21F9/36 

Описание патента на изобретение RU2592067C2

Изобретение относится к атомной энергетике, в частности к выводу из эксплуатации выработавших свой ресурс объектов использования атомной энергии и захоронения твердых и отвержденных радиоактивных отходов.

Известен способ захоронения радиоактивных отходов (заявка на патент РФ №2004131045, опубл. 10.04.2006 г.). Способ включает послойное заполнение могильника цементным раствором, согласно изобретению радиоактивные отходы предварительно осушают сухим цементом, выдерживают до образования цементного камня.

Недостатком данного способа являются высокий расход цемента.

Известен способ захоронения токсичных промышленных отходов (патент РФ №2271881, опубл. 20.03.2006 г.), способ заключается в последовательной укладке и уплотнении водонефтенепроницаемого экрана в виде предварительного обезвоженного до остаточной влажности 5-30% бурового шлама и отходов. Последние покрывают водонефтенепроницаемым экраном, уплотняют и засыпают его слоем почвенно-растительного грунта с последующей посадкой растений. Обезвоживание до остаточной влажности осуществляют путем испарения на открытом воздухе.

Недостатком данного способа являются большая длительность процесса выпаривания на открытом воздухе.

Известен способ захоронения супертоксичных промышленных отходов (патент РФ №2317160, В09В 1/00, G21F 9/00, опубл. 2008.02.20). Способ захоронения супертоксичных промышленных отходов включает последовательную укладку водонепроницаемого экрана, уплотнение его, укладку и уплотнение отходов, покрытие отходов вторым водонепроницаемым экраном, уплотнение и засыпку его слоем почвенно-растительного грунта с последующей посадкой растений. В качестве водонепроницаемого экрана используют изолирующий материал ИМ-1, содержащий нефтяной шлам, известняк в мелкокусковой форме, отходы бурения, глинистые породы, биопрепараты, пропитанные жидким битумом или гудроном. Перед укладкой из супертоксичных отходов формуют во влажной среде при 40-60°С в течение 1-3 суток зацементированные блоки, включающие: супертоксичные отходы, портладцемент, речной песок, изолирующий материал ИМ-1 при следующем соотношении компонентов, мас.ч.: супертоксичные отходы - 1 мас.ч., портладцемент - 0,1-0,3 мас.ч., речной песок - 0,1-0,3 мас.ч., изолирующий материал ИМ-1 - 0,05-0,1 мас.ч., которые покрывают жидким битумом или гудроном в течение 3-5 мин, затем охлаждают и направляют на укладку.

Недостатком данного способа является высокая трудоемкость и высокий расход материалов.

Известен способ захоронения твердых радиоактивных отходов в приповерхностные могильники (патент РФ №2366011, опубл. 27.08.2009). При захоронении отходов производят обваловывание могильника снизу и с боков слоем от 0,5 до 1,5 м уплотненной смеси глины с бокситовым шламом. После заполнения могильника отходами производят обваловывание сверху так, чтобы вертикальная планировка этого гидроизолирующего слоя обеспечивала сток атмосферных осадков. Бокситовый шлам получают при обжиге бокситовой руды совместно с известью и содой и последующей промывке водой от растворимых натриевых соединений.

Недостатком данного способа являются наличие специфичных ингредиентов и высокая трудоемкость процессов по использованию способа.

Известно железобетонное хранилище радиоактивных отходов (патент РФ №2242813, опубл. 20.12.2004 г.). Сущность изобретения: железобетонное хранилище радиоактивных отходов включает окруженную дренажной канавой, выполненную в грунтовом массиве, сужающуюся сверху вниз емкость с плоским днищем. На днище расположен железобетонный, разделенный на отсеки резервуар со стенками, днищем и крышкой, образованными плитами перекрытия. Причем внутренняя поверхность стенок и днища железобетонного, разделенного на отсеки резервуара покрыта водонепроницаемой облицовкой (изолирующим материалом). Железобетонный, разделенный на отсеки резервуар расположен ниже поверхности грунтового массива. Над железобетонным, разделенным на отсеки резервуаром расположен слой песка, над нижней поверхностью которого установлены горизонтальные парожидкостные термосифоны. По верхней и боковым поверхностям слоя песка расположен теплоизолятор, а по периметру слоя песка - дренажная канава. Пространство между стенками сужающейся сверху вниз емкости и стенками железобетонного, разделенного на отсеки резервуара, а также между крышкой железобетонного, разделенного на отсеки резервуара и поверхностью сужающейся сверху вниз емкости заполнено дисперсным грунтом.

Недостатками данного способа являются сложность конструкции и высокая трудоемкость создания.

Известен способ захоронения твердых радиоактивных отходов (патент РФ №2488904, опубл. 27.07.2013), принятый за прототип. Отходы складируют в хранилище, пустоты в хранилище засыпают кварцевым песком (засыпкой), а затем снаружи на хранилище возводят укрытие курганного типа из различных материалов, при этом в качестве хранилища используют здание реактора, отходы и строительные конструкции складируют в помещениях здания, песок снаружи здания и внутри здания подают одновременно, снаружи до образования естественного угла откоса, а внутри, начиная с нижнего этажа, до заполнения всех пустот в каждом помещении, причем во все помещения каждого этажа песок также подают одновременно по крайней мере двумя струями с радиальной скоростью до касания с каждой стеной каждого помещения, при этом струи вращают в одной и той же горизонтальной плоскости у потолка в центре каждого помещения.

Недостатками данного способа являются высокая вероятность проникновения и последующей миграции флюидов из созданного хранилища, а также низкая механическая прочность материала засыпки.

Техническим результатом изобретения является исключение возможности миграции отходов из хранилища и повышение механической прочности материала засыпки.

Технический результат достигается тем, что в способе захоронения твердых радиоактивных отходов, включающем их складирование в здание реактора, засыпку пустот, остающихся между размещенными в хранилище отходами и строительными конструкциями, причем засыпку снаружи подают до образования естественного угла откоса, внутри - до заполнения всех пустот в каждом помещении, а затем снаружи на хранилище возводят послойное покрытие курганного типа, согласно изобретению для засыпки используют каменную соль, или кристаллогидраты искусственных минеральных солей, или смесь кристаллогидратов искусственных минеральных солей, или калийную соль, или смесь калийной и каменной соли укладываемую послойно с увлажнением каждого слоя водой, причем отходы складируют перед засыпкой в помещениях на расстоянии от стен и потолка не менее 10 В, где В - минимальная толщина стенки реактора, м.

Способ захоронения твердых радиоактивных отходов поясняется следующими фигурами:

фиг. 1 - вертикальный разрез хранилища отходов, где:

1 - твердые или отвержденные радиоативные отходы;

2 - здание реактора;

3 - внешняя засыпка из увлажненных слоев каменной, или калийной соли, или их смеси, кристаллогидраты искусственных минеральных солей или их смесь;

4 - внутренняя засыпка из увлажненных слоев каменной или калийной соли или их смеси, или из кристаллогидратов искусственных минеральных солей, или смеси кристаллогидратов искусственных минеральных солей;

5 - послойное многофункциональное покрытие курганного типа из различных материалов с учетом геологических и природно-климатических особенностей площадки расположения хранилища;

В - минимальная толщина стенок реактора.

Фиг. 2 - кристаллогидраты неорганических солей.

Способ захоронения твердых радиоактивных отходов осуществляют следующим способом. Отходы 1 складируют в здание реактора 2, отработавшего свой ресурс, с соблюдением необходимых минимальных зазоров 10 В, м, между ними и стенками реактора 2. Пустоты, остающиеся между размещенными в здании реактора 2 отходами 1 и строительными конструкциями реактора 2, засыпают вместо кварцевого песка засыпкой 4, например, из слоев каменной или калийной соли или их смеси, или из кристаллогидратов искусственных минеральных солей, или смеси кристаллогидратов искусственных минеральных солей. Каждый слой по мере отсыпки увлажняют водой для получения консолидированной массы. Толщину слоя, а также объемы воды для увлажнения слоя засыпки 3 и 4 определяют аналитическим, экспериментально-аналитическим или экспериментальным путем исходя из условия образования консолидированной массы повышенной прочности. Сыпучую массу 4 и 5 снаружи здания и внутри здания подают до образования естественного угла откоса, до максимального заполнения всех пустот в каждом помещении, а затем снаружи на хранилище возводят послойное многофункциональное покрытие 5 курганного типа из различных материалов с учетом геологических и природно-климатических особенностей площадки расположения хранилища. Использование в качестве засыпи каменной, калийной солей или их смеси с увлажнением каждого слоя водой позволит создать консолидированный соляной массив повышенной прочности с полным повторением свойств естественного массива. Складирование отходов перед засыпкой в помещениях на расстоянии от стен и потолка не менее 10 В, где В - минимальная толщина стенки реактора, м, позволяет создать соляной массив, непроницаемый для проникновения флюидов к отходам, так и принципиально возможной миграции жидкой части отходов из здания реактора. Меньшая величина зазора не позволит этого гарантировать.

В качестве варианта засыпки возможно использование кристаллогидратов искусственных минеральных солей или их смесей, которые обладают способностью дополнительно иммобилизировать радионуклиды. В качестве сыпучей массы можно использовать смесь кристаллогидратов искусственных минеральных солей. Для отверждения отходов, в том числе радиоактивных, возможно использование искусственных минеральных солей, обладающих фазовыми превращениями (твердое-жидкое) в интервале температур от 20 до 122°С. На фиг. 2 в качестве примера приведен класс соединений (фосфаты, бораты, силикаты, сульфаты, нитраты), позволяющий использовать их тепловые и физико-химические свойства для быстрой и многократно воспроизводимой изоляции жидких и твердых отходов.

При заполнении засыпкой здания реактора 2 кристаллогидратами для повышения эффективности заполнения пространства между отходами 1 и зданием реактора возможно предварительное плавление кристаллогидратов. Сущность технологии заключается в том, что используемые химические соединения (одно или смесь нескольких) нагревают до температуры их плавления и далее заливают в здание реактора 2, в котором они после охлаждения твердеют. При охлаждении весь объем расплава превращается в прочный соляной блок. Литье кристаллогидратов искусственных минеральных солей особенно упрощается в случае стабильного (при некотором перегреве) плавления кристаллогидрата в собственной кристаллизационной воде, то есть при образовании расплава того же состава, что и твердый кристаллогидрат (без выделения низшего кристаллогидрата или безводной соли). При охлаждении весь объем расплава превращается обратно в твердый кристаллогидрат (агрегат кристаллов) без осложнения, которое может возникать при обратной гидратации низшего кристаллогидрата или безводной формы. Случай полурасплавленной массы кристаллогидрата указанного свойства не вносит осложнений, так как после заполнения формы текучей массой пульпы обратная картина образования кристаллогидрата подобна заключительной стадии отвердевания истинного расплава: отвердевание происходит в межкристаллических порах, состав межкристального расплава идентичен составу твердых кристаллов. Приведенный выше класс неорганических соединений (фиг. 2), способных образовывать кристаллогидраты, может быть использован для перевода жидких радиоактивных отходов и других опасных отходов в твердое состояние в виде искусственных соляных блоков. При этом данные безводные минеральные соли поглощают по весу от 50 и более процентов жидких отходов с образованием кристаллогидратов. Минеральную соль, используемую в качестве наполнителя-отвердителя, подбирают таким образом, чтобы температура ее плавления превышала температуру изолируемого источника тепла (например, радиоактивных отходов).

Применение данного способа захоронения твердых радиоактивных отходов обеспечивает следующие преимущества:

- исключение возможности миграции отходов из хранилища;

- повышение механической прочности материала засыпки;

- снижение трудоемкости проведения работ;

- повышение безопасности проведения работ.

Похожие патенты RU2592067C2

название год авторы номер документа
ХРАНИЛИЩЕ ОТХОДОВ 2009
  • Ковалёв Олег Владимирович
  • Мозер Сергей Петрович
  • Тхориков Игорь Юрьевич
  • Шестаков Николай Егорович
RU2417466C1
СПОСОБ ЗАХОРОНЕНИЯ ТВЕРДЫХ РАДИОАКТИВНЫХ ОТХОДОВ 2012
  • Тутунина Евгения Викторовна
  • Коровкин Сергей Викторович
RU2488904C1
СПОСОБ ВЫВОДА ИЗ ЭКСПЛУАТАЦИИ УРАН-ГРАФИТОВОГО ЯДЕРНОГО РЕАКТОРА 2015
  • Изместьев Андрей Михайлович
  • Захарова Елена Васильевна
  • Павлюк Александр Олегович
  • Котляревский Сергей Геннадьевич
  • Беспала Евгений Владимирович
  • Кузов Владимир Александрович
RU2580819C1
СПОСОБ ЗАХОРОНЕНИЯ РАДИОАКТИВНЫХ ОТХОДОВ И КОНТЕЙНЕР ДЛЯ ИХ ХРАНЕНИЯ 2021
  • Узиков Виталий Алексеевич
RU2754771C1
СПОСОБ ЗАХОРОНЕНИЯ ТЕХНОЛОГИЧЕСКОЙ ШАХТЫ ДЛЯ РАДИОАКТИВНЫХ ОТХОДОВ ПРИ ВЫВОДЕ ИЗ ЭКСПЛУАТАЦИИ УРАН-ГРАФИТОВОГО РЕАКТОРА 2016
  • Падерин Егор Станиславович
  • Павлюк Александр Олегович
  • Шешин Андрей Аркадьевич
  • Писарев Виталий Николаевич
  • Непомнящий Александр Николаевич
  • Беспала Евгений Владимирович
  • Котляревский Сергей Геннадьевич
RU2625169C1
СПОСОБ ЗАХОРОНЕНИЯ ТОКСИЧНЫХ И РАДИОАКТИВНЫХ ОТХОДОВ 2014
  • Мозер Сергей Петрович
  • Ковалев Олег Владимирович
  • Райс Виктор Владимирович
  • Заморкина Юлия Владимировна
RU2576331C1
СПОСОБ ФОРМИРОВАНИЯ БАРЬЕРОВ БЕЗОПАСНОСТИ ПРИ СОЗДАНИИ ПУНКТА ЗАХОРОНЕНИЯ ОСОБЫХ РАДИОАКТИВНЫХ ОТХОДОВ 2016
  • Падерин Егор Станиславович
  • Павлюк Александр Олегович
  • Шешин Андрей Аркадьевич
  • Писарев Виталий Николаевич
  • Непомнящий Александр Николаевич
  • Беспала Евгений Владимирович
  • Котляревский Сергей Геннадьевич
RU2625329C1
ПОДЗЕМНЫЙ БЕСКОНТЕЙНЕРНЫЙ СПОСОБ ЗАХОРОНЕНИЯ ТВЕРДЫХ ИСТОЧНИКОВ РАДИОАКТИВНОГО ИЗЛУЧЕНИЯ В ОТРАБОТАННЫХ ПОДЗЕМНЫХ ГОРНЫХ ВЫРАБОТКАХ КРИОЛИТОЗОНЫ 2003
  • Киселев В.В.
  • Хохолов Ю.А.
  • Каймонов М.В.
RU2263985C2
СПОСОБ ПЕРЕРАБОТКИ И ЗАХОРОНЕНИЯ РАДИАЦИОННО ЗАГРЯЗНЕННОЙ РАСТИТЕЛЬНОСТИ НА ТЕРРИТОРИЯХ КРИОЛИТОЗОНЫ 2009
  • Киселев Валерий Васильевич
  • Хохолов Юрий Аркадьевич
  • Каймонов Михаил Васильевич
RU2407084C1
СПОСОБ ВЫВОДА ИЗ ЭКСПЛУАТАЦИИ КАНАЛЬНОГО УРАН-ГРАФИТОВОГО ЯДЕРНОГО РЕАКТОРА 2010
  • Гаврилов Петр Михайлович
  • Кудрявцев Евгений Георгиевич
  • Антоненко Михаил Викторович
  • Устинов Александр Алексеевич
  • Зяпаров Ильдар Рахимович
  • Пешков Сергей Евгеньевич
  • Горобченко Александр Дмитриевич
RU2444796C1

Иллюстрации к изобретению RU 2 592 067 C2

Реферат патента 2016 года СПОСОБ ЗАХОРОНЕНИЯ ТВЕРДЫХ РАДИОАКТИВНЫХ ОТХОДОВ

Изобретение относится к атомной энергетике, в частности к выводу из эксплуатации выработавших свой ресурс объектов использования атомной энергии и захоронения твердых и отвержденных радиоактивных отходов. В качестве сыпучей массы используют каменную, калийную соли или их смесь, укладываемую послойно с увлажнением каждого слоя водой, причем отходы складируют перед засыпкой в помещениях на расстоянии от стен и потолка не менее 10 В, м, где В - толщина стенки реактора. Технический результат - исключение возможности миграции отходов из хранилища, повышение механической прочности материала засыпки, повышение безопасности проведения работ. 2 ил.

Формула изобретения RU 2 592 067 C2

Способ захоронения твердых радиоактивных отходов, включающий их складирование в здание реактора, засыпку пустот, остающихся между размещенными в хранилище отходами и строительными конструкциями, причем засыпку снаружи подают до образования естественного угла откоса, внутри - до заполнения всех пустот в каждом помещении, а затем снаружи на хранилище возводят послойное покрытие курганного типа, отличающийся тем, что для засыпки используют каменную соль или кристаллогидраты искусственных минеральных солей, или смесь кристаллогидратов искусственных минеральных солей или калийную соль, или смесь калийной и каменной соли, укладываемую послойно с увлажнением каждого слоя водой, причем отходы складируют перед засыпкой в помещениях на расстоянии от стен и потолка не менее 10 В, где В - минимальная толщина стенки реактора, м.

Документы, цитированные в отчете о поиске Патент 2016 года RU2592067C2

СПОСОБ ЗАХОРОНЕНИЯ ТВЕРДЫХ РАДИОАКТИВНЫХ ОТХОДОВ 2012
  • Тутунина Евгения Викторовна
  • Коровкин Сергей Викторович
RU2488904C1
СПОСОБ ЗАХОРОНЕНИЯ РАДИОАКТИВНЫХ ОТХОДОВ И ТЕПЛОВЫДЕЛЯЮЩАЯ КАПСУЛА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Арутюнян Рафаэль Варназович
  • Большов Леонид Александрович
  • Кондратенко Петр Сергеевич
  • Матвеев Леонид Владимирович
RU2510540C1
US4971752 A1, 20.11.1990
JP2000131496 A, 12.05.2000 .

RU 2 592 067 C2

Авторы

Мозер Сергей Петрович

Ковалев Олег Владимирович

Райс Виктор Владимирович

Заморкина Юлия Владимировна

Даты

2016-07-20Публикация

2014-11-28Подача