ГИДРАВЛИЧЕСКИЙ ИЛИ ПНЕВМАТИЧЕСКИЙ ДИОД Российский патент 2016 года по МПК G05D7/01 

Описание патента на изобретение RU2593919C1

Изобретение относится к области управления или регулирования расхода в текучей среде (жидкость, газ) и может быть использовано в различных гидравлических и пневматических системах, в которых необходимо регулировать параметры потоков рабочей среды при низких и средних давлениях, в том числе в качестве запорных органов гидравлических и пневматических машин периодического действия (например, в насосах и компрессорах).

Известны гидравлические и пневматические диоды (в дальнейшем - гидропневматические диоды), содержащие канал с установленным в нем по крайней мере одним элементом, имеющим поверхности с наклоном в сторону прямого потока (см., например, Носов Е.Ю. Повышение эффективности работы гидропневматических агрегатов с катящимся ротором. Автореферат дисс. канд. наук., 2009 г., стр. 14, рис. 12).

Наиболее близким к заявляемому техническому устройству является гидропневматический диод, содержащий канал прямоугольного сечения для прохода жидкой или газообразной среды, в котором на двух противоположных сторонах канала установлена по крайней мере одна пара жестких пластин, наклоненных под углом в сторону прямого потока (см. Носов Е.Ю. Повышение эффективности работы гидропневматических агрегатов с катящимся ротором. Автореферат дисс. канд. наук., 2009 г., стр. 12, рис. 6).

Недостатком известных конструкций является их низкая диодность (отношение расхода прямого потока к расходу потока в обратном направлении), особенно при работе на средних давлениях газа и жидкости.

Задачей изобретения является повышение диодности гидропневматических диодов при работе на средних давлениях газа и жидкости.

Данный технический результат достигается тем, что в известном гидропневматическом диоде, содержащем канал прямоугольного сечения для прохода жидкой или газообразной среды, в котором на двух его противоположных сторонах установлены друг против друга по крайней мере две жесткие пластины, наклоненные под углом в сторону прямого потока, согласно заявляемому изобретению каждая жесткая пластина снабжена установленной параллельно и вплотную к ней по плоскости гибкой пластиной, размещенной со стороны обратного потока, с образованием пары пластин, причем гибкая пластина имеет длину, превышающую длину жесткой пластины в сторону оси канала.

Пара пластин, установленная на одной стороне канала, смещена относительно пары пластин, расположенных на другой стороне канала, вдоль его оси, причем свободный конец гибкой пластины, направленный к противоположной стороне канала от места ее установки, пересекает ось канала.

Между напротив расположенных пар пластин, в непосредственной близости к оси канала, со стороны жестких пластин установлен штырь, пересекающий канал перпендикулярно потоку жидкой или газообразной среды.

Сущность изобретения поясняется чертежами:

На фиг. 1-3 изображен вариант гидропневматического диода с парами пластин, в каждой из которых одна пластина жесткая, а другая гибкая.

На фиг. 4-6 изображен вариант гидропневматического диода с парами пластин, где в каждой паре пластин гибкая пластина пересекает ось канала диода.

На фиг. 7-9 изображен гидропневматический диод, в котором в каждой паре пластин гибкая пластина пересекает ось канала, а в канале со стороны жестких пластин, в непосредственной близости к оси установлен перпендикулярно оси канала штырь.

На фиг. 10-12 изображен гидропневматический диод, в котором последовательно расположены друг напротив друга пары пластин таким образом, что гидравлическое сопротивление обратному потоку возрастает по ходу обратного потока, который показан черными прямыми стрелками (прямой поток показан белыми прямыми стрелками).

На фиг. 13 изображено типовое прямоугольное сечение канала, характерное для всех описанных конструкций.

Гидравлический или пневматический диод 1 (фиг. 1-3) содержит канал 2 прямоугольного сечения для прохода жидкой или газообразной среды, в котором на двух его противоположных сторонах установлены последовательно три группы элементов, состоящих из двух, расположенных друг против друга жестких пластин 3, наклоненных под углом в сторону прямого потока, причем каждая жесткая пластина 3 снабжена параллельно и вплотную к ней по плоскости установленной гибкой пластиной 4, размещенной со стороны обратного потока, с образованием пары пластин, причем эта гибкая пластина 4 имеет длину в сторону оси канала, превышающую длину жесткой пластины 3. Диод 1 имеет два патрубка 5 и 6, которые подсоединяются к гидравлической или пневматической магистрали.

На фиг. 4-6, где показаны удлиненные гибкие пластины 4, пересекающие ось канала 3, пара пластин 3 и 4, установленная на одной стороне канала 2, смещена относительно пары пластин, расположенных на другой стороне канала, вдоль его оси на величину Δ, которая выбирается с таким расчетом, чтобы при прогибе вовнутрь канала 2 гибкие пластины не ударялись друг об друга (фиг. 6).

На фиг. 7-9, где изображен диод с одной группой пар пластин 3 и 4, между напротив расположенных пар пластин 3 и 4 близко к оси канала 1 со стороны жестких пластин 3 установлен штырь 7, пересекающий канал 2 перпендикулярно потоку жидкой или газообразной среды. Координаты установки штыря 7 определяются таким образом, чтобы при прогибе гибких пластин 4 свободный конец гибкой пластины 4, расположенной ближе к входу обратного потока (на фиг. 9 эта пластина расположена в верхнее части канала 2), касался второй гибкой пластины 4 (на фиг. 6 она расположена внизу канала 2) в том месте, где нижняя пластина опирается на штырь 7 (фиг. 9).

На фиг. 10-12 показан диод, в котором используются разные вышеописанные пары пластин, установленные с таким расчетом, что сопротивление обратному потоку жидкости или газа растет по ходу этого потока.

Гидропневматический диод работает следующим образом.

На фиг. 2 и 3 показано, что при прохождении прямого потока жидкости или газа (фиг. 2) гибкие пластины 4 под действием силы лобового сопротивления отгибаются от жестких пластин 3, и поток среды практически не встречает сопротивления в образовавшемся просвете канала 2 между жесткими пластинами 3. При этом благодаря форме канала 2 не образуется сильного завихрения потока, которое отбирает у него часть кинетической энергии.

При течении среды в обратную сторону (фиг. 3) силы лобового сопротивления отгибают пластины таким образом, что они частично перегораживают просвет канала 2 между жесткими пластинами 3, увеличивая гидравлическое сопротивление этого канала. Кроме того, из-за образовавшейся формы канала 2 в этом случае возникает сильное завихрение потока в затопленных полостях между парами пластин, которое отбирает часть кинетической энергии у потока, дополнительно увеличивая сопротивление диоду, которое он оказывает обратному потоку, и увеличивая диодность конструкции.

Еще более сильное сопротивление обратному потоку оказывает конструкция, изображенная на фиг. 4. Здесь, так же как и в конструкции, изображенной на фиг. 1, прямой поток не испытывает большое сопротивление при прохождении прямого потока жидкости или газа (фиг. 5), в то время как при обратном течении среды (фиг. 6) гибкие пластины 4 практически перегораживают прямой путь для потока, он вынужден двигаться в своеобразном лабиринте, и образовавшиеся из-за формы проточной части канала 2 завихрения также отбирают часть его кинетической энергии. Диодность такой конструкции больше, чем у предыдущей, однако способность ее противостоять обратному течению потока с большим перепадом давления на диоде ниже по соображениям прочности гибких пластин 4 в связи с их большей поверхностью и большей длинной, т.к. в этом случае под действием большего перепада давления действующее на них усилие больше.

Максимальная теоретическая диодность конструкции, показанной на фиг. 7, близка к бесконечности, т.к. при прохождении прямого потока (фиг. 8) он оказывает малое сопротивление, отгибая гибкие пластины 4 и свободно огибая тело штыря 7, а при прохождении обратного потока (фиг. 9) пластины 4 смыкаются и полностью перегораживают канал 2, и через диод в обратном направлении протекают только утечки, величина которых зависит от зазора, образовавшегося при контакте между поверхностями пластин 4 и зазора между боковыми торцами пластин 4 и боковыми стенками корпуса диода 1.

Возможность использования такого диода ограничивается в основном прочностью гибких пластин 4. Наличие штыря 7 позволяет увеличить перепад давления на диоде при обратном потоке среды, т.к. он является дополнительной опорой для пластин 4, что позволяет снизить напряжения изгиба в материале, из которого пластины изготовлены, и использовать конструкцию при средних давлениях газа и жидкости.

На фиг. 10 показана комбинированная конструкция диода.

При прохождении прямого потока она, как и рассмотренные выше конструкции, оказывает минимальное сопротивление потоку среды (жидкости или газу). При течении среды в обратном направлении она сначала тормозится только на пластинах 3, и общая энергия потока сразу несколько уменьшается. Затем поток тормозится на паре пластин 3 и 4, когда пластины 4 не перегораживают полностью поток (фиг. 1), и его энергия дополнительно снижается, т.е. снижается и давление потока. Далее, поток уже с существенно более низким давлением проходит через пары пластин 3 и 4, которые полностью перегораживают канал 2, и поток может двигаться только через зазор между ними, образованный благодаря смещению противоположно размещенных пар пластин 3 и 4 на величину Δ (фиг. 4). Далее существенно ослабленный поток упирается в сомкнутые пластины 4 и практически останавливается. Эта конструкция может использоваться преимущественно в пульсирующих потоках, например, в качестве обратных самодействующих клапанов машин объемного действия (в насосах и компрессорах). В этом случае они обладают свойствами наиболее экономичных полосовых прямоточных клапанов, однако имеют существенно более простую и технологичную конструкцию, и могут выдерживать средние давления газа и жидкости.

Предложенные конструктивные варианты гидропневматических диодов обладают существенно более высокой диодностью по сравнению с известными, просты по конструкции и могут работать не только на низких, но и на средних давлениях, что существенно расширяет сферу их применения.

Похожие патенты RU2593919C1

название год авторы номер документа
Гидропневматический диод с закольцованным движением рабочей среды 2019
  • Кайгородов Сергей Юрьевич
RU2718196C1
ГИДРАВЛИЧЕСКИЙ И ПНЕВМАТИЧЕСКИЙ ПРЯМОТОЧНЫЙ ДИОД 2015
  • Кайгородов Сергей Юрьевич
  • Болштянский Александр Павлович
  • Щерба Виктор Евгеньевич
RU2598125C1
ГИДРОДИОД 2021
  • Щерба Виктор Евгеньевич
  • Кайгородов Сергей Юрьевич
  • Болштянский Александр Павлович
RU2760511C1
ВИХРЕВОЙ ГИДРОПНЕВМАТИЧЕСКИЙ ДИОД 2020
  • Кайгородов Сергей Юрьевич
  • Цветков Иван Валерьевич
RU2740487C1
Вихревой гидропневматический диод с вращающейся рабочей частью 2021
  • Кайгородов Сергей Юрьевич
  • Цветков Иван Валерьевич
  • Наумов Данил Александрович
RU2778257C1
ВИХРЕВОЙ ДИОД 2023
  • Кайгородов Сергей Юрьевич
  • Болштянский Александр Павлович
RU2811639C1
ВИХРЕВОЙ ГИДРОДИОД 2023
  • Щерба Виктор Евгеньевич
  • Болштянский Александр Павлович
  • Павлюченко Евгений Александрович
  • Кайгородов Сергей Юрьевич
RU2820098C1
ГИДРАВЛИЧЕСКИЙ РАСПРЕДЕЛИТЕЛЬ 2021
  • Кайгородов Сергей Юрьевич
RU2767223C1
ПОРШНЕВОЙ КОМПРЕССОР С АВТОНОМНЫМ ОХЛАЖДЕНИЕМ ЦИЛИНДРА 2015
  • Болштянский Александр Павлович
  • Щерба Виктор Евгеньевич
  • Григорьев Александр Валерьевич
  • Лобов Игорь Эдуардович
  • Кузеева Диана Анатольевна
  • Носов Евгений Юрьевич
  • Павлюченко Евгений Александрович
  • Кужбанов Акан Каербаевич
RU2600215C1
СТРУЙНЫЙ ДИОД 2017
  • Белоногов Олег Борисович
RU2675172C1

Иллюстрации к изобретению RU 2 593 919 C1

Реферат патента 2016 года ГИДРАВЛИЧЕСКИЙ ИЛИ ПНЕВМАТИЧЕСКИЙ ДИОД

Изобретение относится к области управления или регулирования расхода в текучей среде (жидкость, газ) и может быть использовано в различных гидравлических и пневматических системах, в которых необходимо регулировать параметры потоков рабочей среды при низких и средних давлениях, в том числе в качестве запорных органов гидравлических и пневматических машин периодического действия (например, в насосах и компрессорах). Заявленный гидравлический или пневматический диод содержит канал прямоугольного сечения для прохода жидкой или газообразной среды, в котором на двух его противоположных сторонах установлены друг против друга по крайней мере две жесткие пластины, наклоненные под углом в сторону прямого потока, при этом каждая жесткая пластина снабжена параллельно и вплотную к ней по плоскости установленной гибкой пластиной, размещенной со стороны обратного потока, с образованием пары пластин, причем эта гибкая пластина имеет длину в сторону оси канала, превышающую длину жесткой пластины. Технический результат заключается в повышении диодности гидропневматических диодов при работе на средних давлениях газа и жидкости. 2 з.п. ф-лы, 13 ил.

Формула изобретения RU 2 593 919 C1

1. Гидравлический или пневматический диод, содержащий канал прямоугольного сечения для прохода жидкой или газообразной среды, в котором на двух его противоположных сторонах установлены друг против друга по крайней мере две жесткие пластины, наклоненные под углом в сторону прямого потока, отличающийся тем, что каждая жесткая пластина снабжена параллельно и вплотную к ней по плоскости установленной гибкой пластиной, размещенной со стороны обратного потока, с образованием пары пластин, причем эта гибкая пластина имеет длину в сторону оси канала, превышающую длину жесткой пластины.

2. Гидравлический или пневматический диод по п. 1, отличающийся тем, что свободный конец гибкой пластины, направленный к противоположной стороне канала от места ее установки, пересекает ось канала, и расположенная пара пластин, установленная на одной стороне канала, смещена относительно пары пластин, расположенных на другой стороне канала, вдоль его оси.

3. Гидравлический или пневматический диод по п. 1, отличающийся тем, что между напротив расположенных пар пластин со стороны жестких пластин установлен штырь, пересекающий канал перпендикулярно потоку жидкой или газообразной среды.

Документы, цитированные в отчете о поиске Патент 2016 года RU2593919C1

Регулятор расхода газа 1978
  • Воронин В.Г.
  • Коньков Ю.А.
  • Миронова Т.В.
  • Пейсахов А.Л.
  • Яковлев Я.Б.
SU757001A2
Струйный вихревой диод 1983
  • Азимов Акил Адылович
SU1128008A1
Вихревой диод 1980
  • Андренко Павел Николаевич
  • Мельниченко Раиса Леонтьевна
SU903591A1
US 3472256 A1 14.10.1969.

RU 2 593 919 C1

Авторы

Болштянский Александр Павлович

Щерба Виктор Евгеньевич

Носов Евгений Юрьевич

Кайгородов Сергей Юрьевич

Даты

2016-08-10Публикация

2015-04-03Подача