Гидропневматический диод с закольцованным движением рабочей среды Российский патент 2020 года по МПК G05D7/01 

Описание патента на изобретение RU2718196C1

Изобретение относится к резисторным струйным диодам и может найти применение в струйной гидро- и пневмотехнике.

Известен гидравлический диод, содержащий прямоточный канал с разветвлением с последующим поворотом под углом, близким к 1800. (Н.Тесла, «Клапанный трубопровод», патент США № 1.329.559).

Известен также гидравлический и пневматический диод (в дальнейшем – гидропневматический диод), содержащий прямоточный канал с установленным в нем, по крайней мере, одним рабочим элементом, имеющим поверхности с наклоном в сторону прямого потока [см., например, Носов Е.Ю. Повышение эффективности работы гидропневматических агрегатов с катящимся ротором. Автореферат дисс. канд. наук., стр. 12, рис. 6].

Наиболее близким к заявляемому техническому изобретению является гидропневматический диод, содержащий прямоточный канал для прохода жидкой или газообразной среды, в котором установлен, по крайней мере, один рабочий элемент в виде втулки с поверхностью, имеющей наклон в сторону прямого потока [см. Носов Е.Ю. Повышение эффективности работы гидропневматических агрегатов с катящимся ротором. Автореферат дисс. канд. наук., стр. 14, рис. 12].

К недостатку известных конструкций можно отнести их низкую диодность (отношение расхода прямого потока к расходу обратного потока), что является одним из основных параметров при использовании гидропневматических диодов в различных механизмах.

Техническим результатом изобретения является повышение диодности гидропневматического диода, путём создания «закольцованного» движения рабочей среды внутри гидропневматического диода при движении жидкости или газа через гидропневматический диод в обратном направлении.

Указанный технический результат достигается тем, что в гидропневматическом диоде, содержащем прямоточный канал для прохода жидкой или газообразной среды, в котором установлен, по крайней мере, один рабочий элемент, имеющий наклон в сторону прямого потока, согласно изобретению, прямоточный канал имеет прямоугольное сечение, рабочий элемент выполнен в виде пар симметрично расположенных друг против друга пластин, жёстко закреплённых в корпусе гидропневматического диода, за пластинками в сторону движения прямого потока в корпусе гидропневматического диода выполнены отверстия, которые сообщены с симметрично выполненными каналами в корпусе гидропневматического диода, также каналы сообщены своими концами с отверстиями в корпусе гидропневматического диода со стороны выхода рабочей среды из прямоточного канала при её движении в прямом направлении.

Сущность изобретения поясняется на примере конструктивного варианта гидропневматического диода с закольцованным движением рабочей среды.

На фиг. 1-3 изображен гидропневматический диод прямоугольного сечения, в корпусе которого выполнены отверстия, которые сообщены с симметрично выполненными каналами.

На фиг. 2 изображена работа гидропневматического диода при движении рабочей среды (жидкость или газ) в прямом направлении.

На фиг. 3 изображена работа гидропневматического диода при движении рабочей среды (жидкость или газ) в обратном направлении.

Гидропневматический диод (фиг. 1-3), содержит корпус 1 с прямоточным каналом 2 прямоугольного сечения для прохода жидкой или газообразной среды, в котором установлены друг против друга рабочие элементы выполненные в виде пар симметрично расположенных друг против друга пластин 3, имеющих наклон под острым углом α со стороны обратного потока, и расположены на расстоянии Н друг от друга. Расстояние L между пластинами 3 в центре гидропневматического диода должно быть таким, чтобы площадь сечения прямоугольника, образованного рабочим элементом, соответствовала площади сечения круга патрубка 4 на входе и выходе гидропневматического диода диаметром D.

За пластинками 3 в сторону движения прямого потока в корпусе 1 гидропневматического диода выполнены отверстия 5 диаметром d под тем же углом и на том же расстоянии, что и закрепленные пластины 3. Отверстия 5 сообщены с симметрично выполненными каналами 6 в корпусе 1 гидропневматического диода того же диаметра d. Отверстия 5 выполнены под углом α и меняют симметрично своё направление внутри корпуса 1 гидропневматического диода. Каналы 6 сообщены своими концами с отверстиями 7 того же диаметра d в корпусе 1 гидропневматического диода со стороны выхода рабочей среды из прямоточного канала при движении в прямом направлении.

Работа гидропневматического диода осуществляется следующим образом.

При прохождении прямого потока жидкости или газа (на фиг.2 показано стрелками), направление потока меняется незначительно, не встречая особого сопротивления и практически не теряя кинетической энергии, так как рабочая среда, огибает наклонные пластинки 3, расположенные под тупым углом со стороны потока, при этом рабочая среда стремится к оси прямоточного канала 2 и к выходу из гидропневматического диода. Таким образом рабочая среда практически беспрепятственно и без потери энергии проходит через гидропневматический диод в данном направлении.

При прохождении обратного потока жидкости или газа (фиг. 3), из-за наклона рабочих элементов в виде пластин 3 под острым углом со стороны потока, поток при прохождении каждого из них делится, при этом часть потока, затекающая под пластины 3, направляется через отверстия 5, где меняет своё направление на противоположное основному потоку и движется в каналах 6 до выхода через отверстия 7. Таким образом образуется «закольцованное» движение рабочей среды, что, в свою очередь, приводит к уменьшению скорости и расходу рабочей среды, т.е. увеличению диодности гидропневматического диода. Вторая и основная часть потока при этом движется в центре по прямоточному каналу 2 гидропневматического диода, испытывая торможения из-за вихрей, образованных за пластинами 3, являющимися местными сопротивлениями с наиболее резким сужением.

Предложенный конструктивный вариант гидропневматического диода позволяет «закольцевать» движение рабочей среды внутри гидропневматического диода при движении жидкости или газа через гидропневматический диод в обратном направлении, как следствие, обладает существенно более высокой диодностью по сравнению с известными конструкциями гидропневматических диодов, а также простотой конструктивного исполнения.

Похожие патенты RU2718196C1

название год авторы номер документа
ГИДРОДИОД 2021
  • Щерба Виктор Евгеньевич
  • Кайгородов Сергей Юрьевич
  • Болштянский Александр Павлович
RU2760511C1
ГИДРАВЛИЧЕСКИЙ И ПНЕВМАТИЧЕСКИЙ ПРЯМОТОЧНЫЙ ДИОД 2015
  • Кайгородов Сергей Юрьевич
  • Болштянский Александр Павлович
  • Щерба Виктор Евгеньевич
RU2598125C1
ГИДРАВЛИЧЕСКИЙ РАСПРЕДЕЛИТЕЛЬ 2021
  • Кайгородов Сергей Юрьевич
RU2767223C1
ГИДРАВЛИЧЕСКИЙ ИЛИ ПНЕВМАТИЧЕСКИЙ ДИОД 2015
  • Болштянский Александр Павлович
  • Щерба Виктор Евгеньевич
  • Носов Евгений Юрьевич
  • Кайгородов Сергей Юрьевич
RU2593919C1
Вихревой гидропневматический диод с вращающейся рабочей частью 2021
  • Кайгородов Сергей Юрьевич
  • Цветков Иван Валерьевич
  • Наумов Данил Александрович
RU2778257C1
ВИХРЕВОЙ ГИДРОПНЕВМАТИЧЕСКИЙ ДИОД 2020
  • Кайгородов Сергей Юрьевич
  • Цветков Иван Валерьевич
RU2740487C1
ВИХРЕВОЙ ДИОД 2023
  • Кайгородов Сергей Юрьевич
  • Болштянский Александр Павлович
RU2811639C1
ВИХРЕВОЙ ГИДРОДИОД 2023
  • Щерба Виктор Евгеньевич
  • Болштянский Александр Павлович
  • Павлюченко Евгений Александрович
  • Кайгородов Сергей Юрьевич
RU2820098C1
ПРЯМОТОЧНЫЙ ЭЛЕКТРОРЕАКТИВНЫЙ ДВИГАТЕЛЬ 2016
  • Канев Степан Васильевич
  • Попов Гарри Алексеевич
  • Суворов Максим Олегович
  • Сырин Сергей Александрович
  • Хартов Сергей Анатольевич
  • Ерофеев Александр Иванович
RU2614906C1
СТРУЙНЫЙ ДИОД 2017
  • Белоногов Олег Борисович
RU2675172C1

Иллюстрации к изобретению RU 2 718 196 C1

Реферат патента 2020 года Гидропневматический диод с закольцованным движением рабочей среды

Изобретение относится к резисторным струйным диодам и может найти применение в струйной гидро- и пневмотехнике. Гидропневматический диод содержит корпус (1) с прямоточным каналом (2) прямоугольного сечения для прохода жидкой или газообразной среды, в котором установлены друг против друга рабочие элементы в виде пары пластин (3), имеющих наклон под острым углом (α) со стороны обратного потока, и расположены на расстоянии (Н) друг от друга. Расстояние (L) между пластинами (3) в центре гидропневматического диода должно быть таким, чтобы площадь сечения прямоугольника, образованного рабочим элементом, соответствовала площади сечения круга патрубка (4) на входе и выходе гидропневматического диода диаметром (D). За пластинками (3) в сторону движения прямого потока в корпусе (1) гидропневматического диода выполнены отверстия (5) диаметром (d) под тем же углом и на том же расстоянии, что и закрепленные пластины (3). Отверстия (5) сообщены с симметрично выполненными каналами (6) в корпусе (1) гидропневматического диода того же диаметра (d). Отверстия (5) выполнены под углом (α) и меняют симметрично своё направление внутри корпуса (1) гидропневматического диода. Каналы (6) сообщены своими концами с отверстиями (7) того же диаметра (d) в корпусе (1) гидропневматического диода со стороны выхода рабочей среды из прямоточного канала при движении в прямом направлении. В результате повышается диодность гидропневматического диода. 3 ил.

Формула изобретения RU 2 718 196 C1

Гидропневматический диод, содержащий корпус, прямоточный канал для прохода жидкой или газообразной среды, в котором установлен, по крайней мере, один рабочий элемент с поверхностью, имеющей наклон в сторону прямого потока, отличающийся тем, что прямоточный канал имеет прямоугольное сечение, рабочий элемент выполнен в виде пар симметрично расположенных друг против друга пластин, жёстко закреплённых в корпусе гидропневматического диода, за пластинками в сторону движения прямого потока в корпусе гидропневматического диода выполнены отверстия, которые сообщены с симметрично выполненными каналами в корпусе гидропневматического диода, и каналы сообщены своими концами с отверстиями в корпусе гидропневматического диода со стороны выхода рабочей среды из прямоточного канала при движении в прямом направлении.

Документы, цитированные в отчете о поиске Патент 2020 года RU2718196C1

ГИДРАВЛИЧЕСКИЙ ИЛИ ПНЕВМАТИЧЕСКИЙ ДИОД 2015
  • Болштянский Александр Павлович
  • Щерба Виктор Евгеньевич
  • Носов Евгений Юрьевич
  • Кайгородов Сергей Юрьевич
RU2593919C1
ГИДРАВЛИЧЕСКИЙ И ПНЕВМАТИЧЕСКИЙ ПРЯМОТОЧНЫЙ ДИОД 2015
  • Кайгородов Сергей Юрьевич
  • Болштянский Александр Павлович
  • Щерба Виктор Евгеньевич
RU2598125C1
DE 102014111963 A1, 05.03.2015
US 1329559 A, 03.02.1920.

RU 2 718 196 C1

Авторы

Кайгородов Сергей Юрьевич

Даты

2020-03-31Публикация

2019-10-08Подача