ТРЕУГОЛЬНАЯ ПОДРЕШЕТКА ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ Российский патент 2016 года по МПК H01Q21/00 

Описание патента на изобретение RU2594670C2

ОБЛАСТЬ ТЕХНИКИ

Описываемый в заявке объект изобретения относится к электронным средствам; связи и радиолокационным системам (РЛС) и к вариантам реализации антенных решеток для использования в электронных средствах связи и РЛС.

Летательные аппараты, в том числе и космические летательные аппараты, обычно включают системы средств связи, в которых для связи с наземными системами используются антенные решетки. Фазированные антенные решетки (ФАР) находят применение и в бортовых системах связи, и в системах связи наземного базирования. Летательные аппараты, особенно космические летательные аппараты, имеют ограниченные источники энергии и, следовательно, должны контролировать свои энергоресурсы. Таким образом, энергоэффективные системы ФАР могут быть полезны.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В одном из вариантов реализации изобретения блок антенной подрешетки содержит теплопроводящую основу из пеноматериала, излучающие элементы, соединенные посредством связующего с основой из пеноматериала, и обтекатель, расположенный смежно с излучающими элементами. На виде сверху блок подрешетки представляет собой треугольную форму, а множество излучающих элементов скомпоновано в треугольную решетку на основе из пеноматериала.

В другом варианте блок фазированной антенной решетки содержит множество панелей, при этом каждая панель содержит множество блоков антенных подрешеток. По крайней мере, один из блоков антенных подрешеток содержит основу из теплопроводящего пеноматериала, множество излучающих элементов, соединенных посредством связующего с основой из пеноматериала, и обтекатель, расположенный 30 смежно с излучающими элементами. На виде сверху указанный блок подрешетки представляет собой треугольную форму, а указанное множество излучающих элементов скомпоновано в треугольную решетку на основе из пеноматериала.

В другом варианте реализации изобретения летательный аппарат содержит систему средств связи и ФАР блок, подсоединенный к указанной системе средств связи, содержащий множество панелей. Каждая панель содержит блоки антенных подрешеток, из которых по крайней мере один содержит основу из теплопроводящего пеноматериала, излучающие элементы, соединенные посредством связующего с основой из пеноматериала, и обтекатель, расположенный смежно с излучающими элементами. На виде сверху указанный блок подрешетки представляет собой треугольную форму, а указанное множество излучающих элементов скомпоновано в треугольную решетку на основе из пеноматериала.

Из приведенного ниже описания будут ясны и другие области применения изобретения. Следует понимать, что описание и конкретные примеры приведены только с иллюстративными целями и не имеют целью ограничить объем притязаний представленного изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Далее приведены варианты способов и систем в соответствии с описанием предлагаемого изобретения со ссылкой на следующие чертежи.

На фиг.1 схематически представлена аксонометрическая проекция блока антенной подрешетки в разобранном виде в соответствии с вариантами реализации изобретения.

На фиг.2 схематически представлен вид сверху блока антенной подрешетки в соответствии с вариантами реализации изобретения.

На фиг.3 схематически представлена аксонометрическая проекция антенной панели в соответствии с вариантами реализации изобретения.

На фиг.4 схематически представлен вид сверху антенной панели в соответствии с вариантами реализации изобретения.

На фиг.5 схематически представлен вид сверху антенны в соответствии с вариантами реализации изобретения.

Фиг.6 - схема, иллюстрирующая бортовую систему связи, которая может включать в себя антенну в соответствии с вариантами реализации изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Ниже приведены конструкции блоков антенных подрешеток, предназначенных для использования в системах фазированных антенных решеток, а также описаны антенные системы, содержащие в себе такие блоки антенных подрешеток. Конкретные подробности определенных вариантов реализации изобретения изложены в приведенном ниже описании и на соответствующих чертежах, чтобы обеспечить полное понимание таких вариантов. Однако специалисту в соответствующей области техники будет понятно, что могут быть реализованы альтернативные варианты изобретения без некоторого количества подробностей, приведенных ниже в описании изобретения.

Предлагаемое здесь изобретение будет описано на основе компонентов функциональных и/или логических блоков и различных стадий обработки сигнала. Для краткости в данном описании могут подробно не приводиться обычные технологии, связанные с инерциальными датчиками измерений, системами глобального позиционирования GPS, навигационными системами, обработкой навигационного сигнала, передачей денных, сигнализацией, управлением сетями и другими функциональными аспектами систем (и отдельных действующих компонентов систем). Кроме того, соединительные линии, изображенные на различных содержащихся в описании чертежей, предназначены для того, чтобы представить пример функциональных зависимостей и/или физических соединений между различными элементами. Следует отметить, что при практической реализации изобретения может присутствовать много альтернативных или дополнительных функциональных зависимостей или физических соединений.

В приведенном ниже описании может идти речь о том, что компоненты или характерные элементы «соединены» или «подсоединены» или «соединены посредством связующего» друг с другом. При этом, если иное толкование не оговорено особо, «соединены» означает, что один компонент/характерный элемент находится в прямом физическом контакте с другим компонентом/характерным элементом. Таким же образом, если особо не оговорено иное толкование, «подсоединены» или «соединены посредством связующего» означает, что один компонент/характерный элемент прямо или косвенно присоединен к (или прямо или косвенно сообщается с) другим компонентом/характерным элементом, при этом они не обязательно находятся в прямом физическом контакте. Таким образом, хотя на чертежах могут быть описаны примеры расположения элементов, в реальном варианте реализации изобретения могут быть представлены дополнительные промежуточные элементы, устройства, характерные элементы или компоненты.

Фиг.1 представляет собой схему аксонометрической проекции блока антенной подрешетки в разобранном виде в соответствии с изобретением. В варианте изобретения на фиг.1 блок 100 подрешетки сформирован из слоевой конструкций и содержит (в перевернутом виде дном вверх) радиатор-теплосъемник 110, множество усилителей 120, монтажную печатную плату 130, слой пеноматериала 140, множество излучающих элементов 150, адгезионный слой 160 и обтекатель 170.

Обтекатель 170 может быть выполнен из любого подходящего материала, прозрачного для радиочастотного излучения. Например, обтекатель 170 может быть выполнен из каптона (KAPTON®). Как вариант, обтекатель 170 может быть выполнен в виде многослойной конструкции.

Адгезионный слой 160 может содержать адгезив с электростатически диссипативными свойствами, чтобы соединить обтекатель 170 посредством связующего со слоем 140 пеноматериала. Адгезив 160 заполняет пространство над и вокруг излучателей 150 и находится в физическом контакте с излучателями 150. Адгезив 160 позволяет отводить с излучателей 150 любой электростатический заряд, накапливаемый на излучателях 150. Понятно, что электростатически диссипативный адгезив 160 будет подсоединен к земле в случае, когда блок 100 излучателей установлен на монтажной печатной плате 130, изображенной на фиг.1. Указанный электростатически диссипативный адгезив 160 может быть выполнен из эпоксидного клея, из клея на основе полиуретана или из клея на основе эфира циановой кислоты, при этом в указанные клеи добавляют небольшую долю, например, пять процентов, проводящей полианилиновой соли. Точное количество указанной добавки будет определяться целями конкретного применения.

Электростатически диссипативный адгезионный слой 160 также способствует формированию теплопроводящего тракта к основе 140 из пеноматериала и устраняет зазор, который в противном случае мог бы образовываться между обтекателем 170 и верхним уровнем излучателей 150. Устранение зазора между внутренней поверхностью обтекателя 170 и излучателями 150 формирует тепловой тракт от обтекателя 170 через слой излучателей 150.

Излучатели 150 расположены в форме треугольной решетки на основе 140 из пеноматериала. Излучатели 150 можно представить плавающими относительно наземных металлических участков поверхности. Хотя на фиг.1 изображены излучатели 150, имеющие скругленную форму, понятно, что излучатели 150 могли бы быть выполнены так, чтобы принять любую подходящую форму, например форму квадрата, шестиугольника, пятиугольника, прямоугольника и т.д. Кроме того, хотя изображен только один слой излучателей, понятно, что блок 100 мог бы содержать два и более слоя излучателей в зависимости от конкретного применения. Аспекты излучателей 150 будут более подробно обсуждаться ниже, когда речь пойдет о фиг.2 и 3.

В одном из вариантов реализации изобретения основа 140 может быть выполнена из синтактного пеноматериала, характеризующегося низкими радиочастотными потерями и обеспечивающего отвод тепла по тракту через слои излучающих элементов. Таким образом, никакого «активного» охлаждения блока излучателей не требуется. Под «активным» охлаждением понимают систему охлаждения, в которой задействована вода или иная охлаждающая среда, протекающая через соответствующую систему или сеть труб для поглощения тепла, выделяемого блоком 100, и переносящая тепло к тепловому излучателю для его рассеивания в пространстве. Использование активного охлаждения обычно ведет к значительному увеличению стоимости и усложняет систему, увеличивает габариты и вес ФАР системы. Таким образом, пассивное охлаждение, которое можно реализовать, используя основу 140 из синтактного пеноматериала, позволяет изготавливать блок 100 подрешетки меньших габаритов и веса, ниже по стоимости и более технологически простой, чем ранее известные ФАР блоки.

В некоторых вариантах реализации изобретения основа 140 из синтактного пеноматериала может быть выполнена в виде полностью поперечно-связанной пенокомпозитной подложки низкой плотности, которая характеризуется низкими потерями в микроволновом диапазоне частот. Основа 140 из пеноматериала может характеризоваться диэлектрической постоянной в пределах от 1,25 до 1,30 в диапазоне частот от 10 до 30 ГГц и тангенсом угла потерь, приблизительно равным 0,025 в этом же частотном диапазоне. Преимущественно, тангенс угла потерь остается относительно неизменным в пределах широкого диапазона частот, приблизительно от 122 ГГц до 33 ГГц. Нагревостойкость основы из пеноматериала предпочтительно составляет менее чем 50,2 градуса Цельсия на 1 ватт. Основа 140 также предпочтительно характеризуется теплопроводностью минимум 0,0015 ватт на дюйм на градус Цельсия. (W/inC), или около 0,0597 ватт на метр на градус Кельвина (W/mk). Известен пеноматериал марки DI-STRATE™, производимый промышленностью и пригодный для указанного применения, плитку из которого можно заказать в компании Аптек Лабораториз Инк, Калифорния (Aptek Laboratories, Inc. of Valencia, Calif).

В некоторых вариантах реализации изобретения монтажная печатная плата (МПП) 130 может быть выполнена из обычного материала для печатных плат, например диэлектрического материала серии RO4003 (Rogers 4003). Множество усилителей 120 может располагаться между МПП 130 и модулем 120 радиатора. В некоторых вариантах реализации изобретения указанное множество усилителей может быть выполнено в виде систем монолитных интегральных схем СВЧ (MMIC), которые подсоединены к источнику питания и контроллеру посредством проводников, проложенных в печатной плате МПП 130.

В некоторых вариантах реализации изобретения модуль 110 радиатора может быть выполнен из материала, характеризующегося переходом из одной фазы в другую (материал с фазовым переходом), в котором выделяемая интегральными схемами MMIC тепловая энергия используется, чтобы вызвать фазовый переход в материале модуля радиатора. Не столь важно, из какого конкретно материала выполнен модуль 110 радиатора. Примеры пригодных для этой цели материалов включают в себя парафин и прочие виды воска, которые плавятся при хорошо известных температурах. Температура, при которой радиатор начнет накапливать избыточную тепловую энергию, определяется конкретным типом воска или иного используемого материала.

Различные компоненты, изображенные на фиг.1, могут быть собраны в блок 100 антенной подрешетки в соответствии с описанием изобретения, изложенным в заявке на патент США No. 12/121,082 (U.S. Patent Application Serial No. 12/121,082 to McCarthy, et al.), которая полностью включается в настоящую заявку посредством ссылки. Хотя толщина различных слоев, изображенных на фиг.1, может меняться в зависимости от задач конкретного применения, в одном примере толщина основы 140 из синтактного пеноматериала составляет от 0,045 до 0,055 дюйма (1,143-1,397 мм). Электростатически диссипативный адгезионный слой 160 может быть разным по толщине, но в одном из вариантов реализации изобретения его толщина составляет примерно 0,001-0,005 дюйма (0,0254 мм-0,127 мм). Толщина обтекателя 170 обычно составляет около 0,003-0,005 дюйма (0,0762-0,127 мм).

Фиг.2 представляет собой вид сверху блока 100 антенной подрешетки в соответствии с изобретением. В соответствии с фиг.2, блок 100 антенной подрешетки образует треугольник, если смотреть сверху. Треугольник включает в себя первое ребро 102 и второе ребро 104, причем указанные ребра ровные, и третье ребро 106, которое имеет пилообразную форму. В одном из вариантов реализации изобретения описана подрешетка в 14,072 дюйма (35,74 см) по высоте и в 16,256 дюйма (41,29 см) по ширине, так что площадь поверхности блока подрешетки составляет приблизительно 114.377 квадратных дюймов (0,0738 квадратного метра). Специалисту будет понятно, что габариты блока 100 антенной подрешетки могут меняться в зависимости от конкретного применения.

Излучающие элементы 150 образуют треугольную решетку, установленную на основу 140. Таким же образом интегральные схемы MMIC 140 образуют треугольную решетку на слое 110 радиатора, но они на фиг.2 не показаны. В некоторых вариантах изобретения излучающие элементы составляют в диаметре приблизительно 0,638 дюйма (1,62 см). Излучающие элементы располагают горизонтальными рядами так, чтобы центры расположенных смежно элементов внутри ряда отстояли друг от друга приблизительно на 1,016 дюйма (2,58 см). Ряды смещены на 0,879 (2,23 см). В варианте, изображенном на фиг.1, представлены 128 излучающих элементов, что позволяет использовать для управления антенной многополюсные и обычные делители/сумматоры мощности Уилкинсона на 3 дБ. Специалисту будет понятно, что расположение излучающих элементов в блоке 100 антенной подрешетки может меняться в зависимости от конкретного применения.

Шесть треугольных блоков 100 подрешетки могут быть собраны в антенную панель 200, в соответствии с Фиг.3 и 4. Соответствующие антенные блоки могут быть закреплены путем их установки на общую основу. Как показано на фиг.4, соответствующие блоки 100 могут быть расположены так, что смежные подрешетки 100 отличаются по фазе на 180 градусов друг относительно друга. Поскольку подрешетки отличаются по фазе на 180 градусов, для суммирования сигналов от подрешеток можно использовать гибридные кольцевые (rat-race) соединители. Специалисту будет понятно, что шестиугольная антенная решетка приближается к кольцевой, и поэтому шестиугольную решетку можно использовать в качестве фидера для двухзеркальной антенны Кассегрена, в которой шестиугольная фазированная решетка находится перед фокусом.

Антенные панели 200 можно скомбинировать так, как показано на фиг.5, чтобы получить антенную систему 500, которую можно подсоединить к системе связи для обеспечения радиочастотной связи с удаленными устройствами. Как показано на фиг.5, антенный блок 500 может содержать целые шестиугольные панели 210 и половинки шестиугольных панелей, расположенные так, чтобы получился плотно упакованный антенный блок 500. Специалисту будет понятно, что все панели 100 подрешеток расположены так, чтобы обеспечить сдвиг фазы в 180 градусов в смежных панелях 100 подрешеток.

Таким образом, описываемая конструкция блока 100 треугольной антенной подрешетки может служить базовым конструктивным модулем для формирования ФАР систем, включая устройства с антенными решетками с электронным управлением луча (ESA). Описываемая треугольная конструкция обладает многими преимуществами по сравнению с прямоугольными конструкциями.

С физической точки зрения, треугольная подрешетка 100 обеспечивает стандартизированный модуль, используя который можно собрать антенную панель 200 и, наконец, антенный блок 500. Треугольная решетка к тому же обеспечивает эффективную диаграмму направленности для антенных элементов и может быть выполнена в относительно крупных габаритах с целью более эффективного производства. Конструкция является расширяемой, позволяющей изменять габариты антенных панелей 200 и антенных блоков 500.

С электротехнической точки зрения, использование треугольных подрешеток устраняет или, по крайней мере, уменьшает многие проблемы, связанные с прямоугольными решетками, особенно с антенными решетками с электронным управлением луча (ESA). Треугольные конфигурации подрешетки требуют меньшее количество излучающих элементов 150, чем прямоугольные решетки, чтобы реализовать тот же самый объем электронного сканирования главного лепестка. Например, для максимального угла θm раствора главного лепестка в 20 градусов ориентация задается уравнением

(1)1+sin(θm)=1,342

Такими образом, для заданной длины волны, λ, для квадратной сетки излучающего элемента справедливо:

(2) λ/dx=λ/dy=1,342 or dx=dy=0,745λ

И площадь на один излучающий элемент составляет:

(3) dxdy=(0,745λ)2=0,555λ2

Напротив, для заданной длины волны λ, в случае квадратной сетки излучающего элемента справедливо уравнение:

(4) λ/(3dx')0,5=λ/dy=1,342,

решение которого дает:

(5) dx'=0,430λ, dy=0,745λ.

Поскольку излучающие элементы расположены в треугольной конфигурации, площадь, приходящаяся на один элемент, задается уравнением:

(6) (dx'dy)=2(0,430λ)(0,745λ)=0,641λ2

Таким образом, для эквивалентного объема сканирования, при 20 градусах раствора максимума главного лепестка диаграммы направленности, треугольная конструкция приблизительно в 15,5% более эффективна, чем квадратная

(7) 0,641λ/0,555λ=1,155

Кроме того, использование нитрид-галлиевых GaN усилителей высокого уровня мощности в режиме передачи сигнала позволяет обеспечить более высокую отдачу мощности. Нитрид-галлиевые усилители позволяют использовать более высокие напряжения стока (25-50 B, DC) по сравнению с обычно используемыми арсенид-галлиевыми GaAs устройствами (3-5 B, DC). Для крупногабаритных решеток это дает чистую прибыль отдачи мощности при полной полезной нагрузке, обусловленную более низкими потерями при преобразовании и распределении мощности. Нитрид-галлиевые GaN устройства к тому же характеризуются более высокими допустимыми температурами каналов, чем арсенид-галлиевые устройства. Это позволяет использовать более простые системы теплоконтроля.

В некоторых вариантах бортовая система связи может включать в себя одну или несколько антенн, сконструированных в соответствии с описанием реализации изобретения. В качестве примера на фиг.6 изображено примерное аппаратное окружение 600, в котором может быть реализована антенна. Окружение 600 включает в себя бортовую систему 602, например, платформу GPS, спутник, летательный аппарат и/или любое другое подключенное к GPS устройство или систему. Окружение 600 также включает в себя компоненты 604 бортовой системы 602, мобильный наземный или бортовой приемник(и) 606 и наземную станцию 608. В указанном примере бортовая система 602 представляет собой платформу GPS, которая изображена в виде GPS спутника, включающего в себя антенну 610 с широким радиолучом (антенна с охватом поверхности) и направленную антенну 612 с фокусированным лучом (антенна с управляемой диаграммой направленности), которые могут быть сконструированы в соответствии с приведенным здесь описанием изобретения. И антенна 610 с широким лучом, и направленная антенна 612 с фокусированным лучом передают информацию о GPS позиционировании и навигационные сообщения на подключенный(е) к GPS приемник(и) 606. Направленная антенна 612 позволяет передавать сфокусированные пучки высокой интенсивности в определенные точки земли, не требуя дополнительной мощности передатчика.

В приведенном примере бортовая система 602 включает в себя телеметрическую и управляющую антенну 614, которую можно использовать для связи с наземной станцией 608. В различных вариантах изобретения GPS-платформа 602 может быть реализована с любым количеством различных датчиков для измерения и/или определения положения спутника, при этом под «положением» понимается ориентация бортовой системы в пространстве в соответствии с координатами широты и долготы относительно плоскости орбиты. Указанная GPS-платформа может, быть стабилизирована по трем осям, которые в приведенном примере изображены как ось 616 тангажа, ось 618 крена и ось 620 рыскания.

Бортовая система 602 может включать в себя систему 622 юстировки антенны для выставления/опорного направления 624 антенны 612, где под опорным направлением понимается электрическая ось антенны или направление передаваемого антенной максимального потока энергии. В приведенном примере система 622 юстировки антенны включает в себя карданный узел 626, кожух 628 и гиродатчик 630 рыскания, тангажа и крена, каждый из которых может уходить от опорного значения вследствие систематической ошибки измерений скорости, масштабного коэффициента и уровня помех при измерении. Ошибки дрейфа параметров гиродатчиков 630 могут создавать отклонения в системе 622 юстировки антенны, из-за которых возникают ошибки при наведении сфокусированного луча антенны при передаче GPS сигналов. Ошибка 632 в наведении приводит к угловому смещению сфокусированного луча 634 от заданного опорного направления 624 антенны.

Бортовая система 602 может включать в себя систему 634 калибровочного контроля (в компонентах 604) для реализации вариантов изобретения с GPS калибровкой гиродатчиков. Бортовая система 602 также включает в себя различные компоненты 636 системы управления, которые могут включать в себя систему правления положением, системные контроллеры, блоки управления антенной, систему(ы) передачи навигационного сигнала, сенсорные приемники и контроллеры, а также любые иные типы контроллеров и систем управления бортовой системой 602. Кроме того, бортовая система 602, приемник(и) 606 и/или наземная станция 608 могут быть реализованы с любым числом или комбинацией различных компонентов, что будет описано далее со ссылкой на пример компьютеризированного устройства 600 на фиг.6. Например, приемник 606 и наземная станция 608 могут быть реализованы как компьютеризированные устройства, которые включают в себя любой компонент или комбинацию компонентов, описанных со ссылкой на пример компьютеризированного устройства 600.

В приведенном примере наземная станция 608 включает в себя устройство 638 оценки ошибки в наведении и систему 640 калибровки гиродатчиков для реализации вариантов с GPS-калибровкой гиродатчиков. В одном варианте реализации изобретения GPS-платформа 602 передает сигналы 642 сканирования на подключенные к GPS приемник(и) 606 посредством направленной антенны 612. Например, сигналы 642 могут передаваться на GPS-приемники 606 с помощью сфокусированного луча 634, который представляет собой отклоненное направление оси антенны 612 сфокусированным лучом.

Сигналы 642 могут передаваться на GPS-приемники 606 с известной амплитудой и с заданной диаграммой направленности профиля сканирования. Например, карданный узел 626 GPS платформы системы 622 юстировки антенны может поворачивать направленную антенну 612 поперек одного или более приемников 606 по заданному пути поперечного сканирования. Направленную антенну 612 можно поворачивать с малой скоростью (например, 0.1 градус/сек) в координатных фреймах азимутального угла и угла места, используя диаграмму направленности достаточно широкую, чтобы создать заметное изменение в значениях отношения сигнал-шум.

GPS-приемник(и) 606 могут принимать сигнал 642, переданный с помощью направленной антенны 612 от GPS-платформы 602 и для каждого сигнала определять значения мощности сигнала. В варианте реализации изобретения, измерения мощности сигнала можно определить как измерения значений отношения сигнал-шум для сигналов 642. GPS-приемники 606 также могут иметь идентификаторы времени, либо иным образом указывать время получения сигнала, так что каждый сигнал 642 может быть определенным образом связан сданными 644 о положении антенны, чтобы определить ошибку 632 в наведении направленной антенны 612. GPS-приемники 606 могут затем сообщать информацию об измерениях 646 мощности сигнала наземной станции 608.

GPS-платформа 602 передает или сообщает данные 644 о положении направленной антенны на наземную станцию 608, при этом данные о положении антенны указывают на отклоненное положение опорного направления 634 направленной антенны 612. Как вариант, GPS-платформе 602 может быть передана команда нацелить опорное направление направленной антенны 612 по специально заданным координатам широты и долготы, соответствующим положению GPS-приемника. Точные координаты широты и долготы также могут быть получены от GPS-приемника.

Наземная станция 608 может получать данные измерений 646 мощности сигнала от GPS-приемника 606. Устройство 638 оценки ошибки на наземной станции 608 оценивает ошибку 632 в наведении направленной антенны 612 с фокусированным лучом на основе данных измерении мощности сигнала 646 и данных 644 о положении антенны, полученных от GPS-платформы 602. Разница между тем, где измерено соотношение сигнал-шум и тем, где оно ожидалось, составляет оценку ошибки наведения.

Система 640 калибровки гиродатчиков на наземной станции 608 может быть выполнена для определения параметров калибровки гиродатчиков на основе оценки ошибки 632 наведения. Параметры калибровки гиродатчика могут включать в себя систематическую "ошибку измерений скорости и масштабный коэффициент, сообщаемые GPS-платформе. В одном из вариантов реализации изобретения, чтобы оценить параметры 648 калибровки гиродатчиков и точно определить дрейф параметров, значения ошибки в наведении антенны вводятся в алгоритм фильтра Калмана.

Параметры систематической ошибки измерения скорости и масштабного коэффициента гиродатчика можно определить для всех гиродатчиков 630 по трем разным осям (а именно, оси 616 тангажа, оси 618 крена и оси 620 рыскания), используя уравнение:

ωgyro=(1+SF)ωtrue+bgyror

где ωgyro - значение скорости, измеренное гиродатчиком, SF - масштабный коэффициент гиродатчика, ωtrue - истинное значение скорости бортовой системы, bgyro - систематическая ошибка измерения скорости, и ηr - уровень помех. При заданном значении ωgyro, можно оценить систематическую ошибку и масштабный коэффициент гиродатчика. Определение параметров калибровки гиродатчика с использованием алгоритма фильтра Калмана более подробно описано в документе "Precision Spacecraft Attitude Estimators Using an Optical Payload Pointing System", Jonathan A. Tekawy (Journal of Spacecraft and Rockets Vol.35, No.4, July-August 1998, pages 480-486), который включен в заявку посредством ссылки.

Наземная станция 608 может передавать или иным образом пересылать значения параметров 648 калибровки гиродатчиков на GPS-платформу 602, где система 634 контроля калибровки может калибровать гиродатчики 630 с учетом дрейфа параметров. Значения параметров 648 калибровки гиродатчиков, переданные на GPS-платформу, могут также содержать информацию для корректировки номинального выходного значения скорости и для получения точных оценок скорости и положения объекта. При скорректированных параметрах гиродатчиков, GPS-платформа 602 может более точно наводить как антенну 610 с охватом Земли, так и антенну 612 с фокусированным лучом.

Таким образом, приведено описание конструкций блоков антенных подрешеток, антенных систем, выполненных из указанных блоков подрешеток, и летательных аппаратов, содержащих антенны, выполненные из указанных блоков подрешеток. Антенна с ФАР, сконструированная в соответствии с приведенным здесь описанием, может работать как в режиме приема, так и в режиме передачи сигнала. В некоторых вариантах реализации изобретения излучающие элементы антенны могут содержать малошумящие усилители (МШУ), выполненные из арсенида галлия (GaAs) или из фосфида индия (InP) для обеспечения многофункциональности приема. Нитрид-галлиевые усилители мощности повышают выход мощности во время работы в режиме передачи сигнала большой мощности, а во время работы в режиме приема антенна использует меньше энергии. Для соединения элементов в режиме приема и в режиме передачи сигнала может использоваться та же самая комбинированная сеть, состоящая из полосковой схемы в монтажной печатной плате 130.

Хотя на фиг.6 вариант реализации изобретения иллюстрирует космический летательный аппарат, специалисту будет понятно, что антенная система в соответствии с описанием изобретения может быть реализована и на наземных транспортных средствах, на морских судах или авиатранспортных средствах. Учитывая это, термин «транспортное средство» следует толковать широко, включая в него все указанные виды транспортных средств.

В некоторых вариантах реализации изобретения антенные решетки, сконструированные соответствии с приведенным здесь описанием изобретения, могут быть специально созданы для установки на космических аппаратах, благодаря, хотя бы частично, своим тепловым характеристикам, свойствам электростатического разряда и весовым параметрам конструкции. Тем не менее, специалисту будет понятно, что антенные решетки, сконструированные в соответствии с изобретением, могут широко использоваться в бортовых и наземных системах. Кроме того, антенные решетки, сконструированные в соответствии с изобретением, могут использоваться в системах связи и РЛС. Это обеспечивает особое преимущество радиолокационным системам поскольку та же самая антенна может использоваться как в режиме передачи, так и в режиме приема сигнала. Для использования в средствах связи, это обеспечивает компактное одноантенное техническое решение.

Еще одним вариантом реализации изобретения может быть блок антенной подрешеткй, имеющий теплопроводящую основу из пеноматериала, множество излучающих элементов, соединенных посредством связующего с основой из пеноматериала, и обтекатель, расположенный смежно с излучающими элементами, причем блок подрешеткй представляет собой треугольную форму на виде сверху, при этом излучающие элементы скомпонованы в треугольную решетку на основе из пеноматериала.

Кроме того, обсуждаемая выше антенная подрешетка может также иметь монтажную печатную плату, соединенную посредством связующего с основой из теплопроводящего пеноматериала, и треугольную решетку усилителей, расположенных смежно с печатной платой.

Кроме того, обсуждаемая выше антенная подрешетка может также иметь модуль радиатора, расположенный смежно с треугольной решеткой усилителей.

Антенна также может включать в себя треугольную решетку усилителей, содержащую решетку монолитных интегральных схем СВЧ (MMIC), а модуль радиатора содержит материал с фазовым переходом.

Антенная подрешетка может также включать в себя статически диссипативный адгезионный слой, нанесенный на основу из пеноматериала и находящийся в контакте с излучающими элементами, который соединяет посредством связующего обтекатель с основой. Указанная основа из пеноматериала может иметь нагревостойкость не более 50,2 градусов Цельсия на 1 ватт, и может содержать клейкий материал с добавками полианилина. Кроме того, в качестве статически диссипативного адгезива может использоваться полиуретан, эпоксидная смола или эфир циановой кислоты.

Несмотря на приведенные различные варианты реализации изобретения, специалисты в соответствующей области техники смогут определить дополнения или изменения, которые можно было бы произвести, не выходя за рамки описания, раскрывающего представленное изобретение. Указанные примеры иллюстрируют различные варианты изобретения и не должны ограничивать предложенное раскрытие изобретения. Таким образом, описание и формулу изобретения следует толковать широко, при этом учитывая только те ограничения, которые обусловлены соответствующим уровнем техники.

Похожие патенты RU2594670C2

название год авторы номер документа
АНТЕННАЯ СИСТЕМА 2011
  • Власов Антон Иванович
  • Сабиров Тимур Раифович
  • Сестрорецкий Борис Васильевич
  • Шаханов Александр Евгеньевич
RU2463691C1
САМОЛЕТНАЯ АНТЕННАЯ РЕШЕТКА 2010
  • Синани Анатолий Исакович
  • Мосейчук Георгий Феодосьевич
  • Князев Владимир Михайлович
  • Агеев Павел Алексеевич
  • Наркевич Андрей Леонидович
  • Васин Анатолий Михайлович
  • Седов Вячеслав Викторович
  • Ломовская Татьяна Алексеевна
RU2453955C2
САМОЛЕТНАЯ АНТЕННАЯ РЕШЕТКА 2010
  • Синани Анатолий Исакович
  • Мосейчук Георгий Феодосьевич
  • Ломовская Татьяна Алексеевна
  • Агеев Павел Алексеевич
  • Васин Анатолий Михайлович
  • Седов Вячеслав Викторович
  • Наркевич Андрей Леонидович
  • Поляков Виктор Борисович
  • Давиденко Александр Николаевич
RU2439758C1
Способ построения активной фазированной антенной решетки 2020
  • Задорожный Владимир Владимирович
  • Косогор Алексей Александрович
  • Ларин Александр Юрьевич
  • Литвинов Алексей Вадимович
  • Омельчук Иван Степанович
RU2730120C1
КОРОТКОИМПУЛЬСНЫЙ РАДИОЛОКАТОР С ЭЛЕКТРОННЫМ СКАНИРОВАНИЕМ В ДВУХ ПЛОСКОСТЯХ И С ВЫСОКОТОЧНЫМ ИЗМЕРЕНИЕМ КООРДИНАТ И СКОРОСТИ ОБЪЕКТОВ 2014
  • Клименко Александр Игоревич
RU2546999C1
Способ построения активной фазированной антенной решётки 2019
  • Косогор Алексей Александрович
  • Задорожный Владимир Владимирович
  • Ларин Александр Юрьевич
  • Омельчук Иван Степанович
RU2697194C1
КОСМИЧЕСКАЯ СИСТЕМА ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ 2020
  • Басков Сергей Михайлович
  • Лабутин Валерий Владимирович
  • Рачинский Андрей Григорьевич
  • Яковлев Артём Викторович
  • Чернов Михаил Евгеньевич
  • Степанов Андрей Юрьевич
RU2747240C1
Способ построения активной фазированной антенной решетки 2019
  • Задорожный Владимир Владимирович
  • Косогор Алексей Александрович
  • Ларин Александр Юрьевич
  • Омельчук Иван Степанович
RU2717258C1
ФАЗИРОВАННАЯ АНТЕННАЯ РЕШЕТКА ОТРАЖАТЕЛЬНОГО ТИПА 1991
  • Толкачев А.А.
  • Левитан Б.А.
  • Ремизов Б.А.
  • Колобов В.А.
  • Маркин Г.В.
  • Шишлов А.В.
  • Шубов А.Г.
RU2048699C1
ДВУМЕРНАЯ МОНОИМПУЛЬСНАЯ ФАР С ЭЛЕКТРОННЫМ УПРАВЛЕНИЕМ ЛУЧОМ 2013
  • Митин Владимир Александрович
  • Винярская Наталья Александровна
  • Синани Анатолий Исакович
  • Авдонина Юлия Александровна
  • Алексеева Наталия Кондратьевна
  • Алексеев Олег Станиславович
RU2541186C1

Иллюстрации к изобретению RU 2 594 670 C2

Реферат патента 2016 года ТРЕУГОЛЬНАЯ ПОДРЕШЕТКА ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ

Изобретение относится к электронным средствам связи и радиолокационным системам. Заявлены фазированная антенная решетка и система связи, содержащая данную антенную решетку; причем особенностью указанной антенной решетки является то, что антенная подрешетка в горизонтальной проекции имеет треугольную форму, а излучающие элементы расположены в треугольной решетке на указанной основе из пеноматериала, причем антенная решетка содержит множество целых шестиугольных панелей, каждая из которых собрана из шести треугольных блоков подрешетки, и множество половинок шестиугольных панелей, причем целые шестиугольные панели и половинки шестиугольных панелей расположены так, что образуют плотно упакованный антенный блок. Техническим результатом является обеспечение более эффективной диаграммы направленности антенных элементов. 2 н. и 10 з.п. ф-лы, 6 ил.

Формула изобретения RU 2 594 670 C2

1. Фазированная антенная решетка, содержащая панели, каждая из которых содержит антенные подрешетки, содержащие
теплопроводящую основу из пеноматериала,
излучающие элементы, соединенные посредством связующего с основой из пеноматериала, и
обтекатель, расположенный смежно с излучающими элементами,
отличающаяся тем, что
антенная подрешетка в горизонтальной проекции имеет треугольную форму, а
излучающие элементы расположены в треугольной решетке на указанной основе из пеноматериала, причем
антенная решетка содержит множество целых шестиугольных панелей, каждая из которых собрана из шести треугольных блоков подрешетки, и множество половинок шестиугольных панелей, причем целые шестиугольные панели и половинки шестиугольных панелей расположены так, что образуют плотно упакованный антенный блок.

2. Фазированная антенная решетка по п. 1, причем антенные подрешетки содержат
монтажную печатную плату, соединенную посредством связующего с теплопроводящей основой из пеноматериала;
треугольную решетку усилителей, расположенных смежно с монтажной печатной платой.

3. Фазированная антенная решетка по п. 2, причем антенные подрешетки содержат модуль радиатора, расположенный смежно с треугольной решеткой усилителей.

4. Фазированная антенная решетка по п. 3, в которой треугольная решетка усилителей содержит решетку монолитных сверхвысокочастотных интегральных схем (MMIC); а
модуль радиатора содержит материал с фазовым переходом.

5. Фазированная антенная решетка по п. 1, причем антенные подрешетки содержат статически диссипативный адгезионный слой, нанесенный на основу из пеноматериала и в контакте с излучающими элементами, который соединяет обтекатель посредством связующего с основой.

6. Фазированная антенная решетка по п. 1, в которой основа из пеноматериала имеет нагревостойкость не более около 50,2 градусов Цельсия на 1 Вт.

7. Фазированная антенная решетка по п. 5, в которой статически диссипативный адгезив содержит адгезионный материал с добавкой полианилина.

8. Фазированная антенная решетка по п. 7, в которой статически диссипативный адгезив содержит полиуретан, эпоксидную смолу или эфир циановой кислоты.

9. Транспортное средство, содержащее
систему связи и
фазированную антенную решетку по п. 1, подсоединенную к этой системе связи.

10. Транспортное средство по п. 9, причем антенные подрешетки содержат
монтажную печатную плату, соединенную посредством связующего с теплопроводящей основой из пеноматериала,
треугольную решетку усилителей, расположенных смежно с монтажной печатной платой.

11. Транспортное средство по п. 10, причем антенные подрешетки содержат модуль радиатора, расположенный смежно с треугольной решеткой усилителей.

12. Транспортное средство по п. 11, в котором
треугольная решетка усилителей содержит решетку монолитных сверхвысокочастотных интегральных схем (MMIC), а
модуль радиатора содержит материал с фазовым переходом.

Документы, цитированные в отчете о поиске Патент 2016 года RU2594670C2

СПОСОБ ЛЕЧЕНИЯ ЭПИЛЕПСИИ 1994
  • Максутова Э.Л.
RU2120283C1
WO 2006110026 A1, 19.10.2006
J.L
MASA-CAMPOS ET AL
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Microwave and optical technology letters
Способ запрессовки не выдержавших гидравлической пробы отливок 1923
  • Лучинский Д.Д.
SU51A1
Устройство для радиопередачи 1925
  • Покрасов А.Я.
SU2633A1
US 6297775 B1, 02.10.2001
Загрузочный аппарат шахтной сушилки 1950
  • Строганов В.И.
SU92745A1

RU 2 594 670 C2

Авторы

Маккарти Брэдли Л.

Даты

2016-08-20Публикация

2012-01-13Подача