Предлагаемое изобретение может быть использовано для определения электрофизических параметров и неоднородностей диэлектрических и магнитодиэлектрических покрытий на поверхности металла при разработке неотражающих и поглощающих покрытий в авиации, а также в химической, лакокрасочной и других отраслях промышленности.
Наиболее близким по технической сущности к предлагаемому изобретению является СВЧ-устройство для измерения электромагнитных параметров диэлектрических и магнитодиэлектрических покрытий на металле [Патент RU №2273839, C2 МПК7 G01N 15/00, G01R 33/00, 10.04.06. Бюл. №10], содержащее генератор СВЧ, устройство коммутации рупорных излучателей на основе вентилей на pin-диодах, антенну возбуждения медленных поверхностных волн, представляющую из себя N рупорных металлических излучателей размещенных в азимутальной плоскости по кругу и систему приемных антенн Е- и Н-волн.
Недостатком данного устройства для измерения электромагнитных параметров диэлектрических и магнитодиэлектрических покрытий на металле является низкая точность измерения электрофизических параметров покрытия и низкая вероятность обнаружения в них неоднородностей, обусловленные ошибками установки приемных антенн в заданные точки сканирования и отсутствием синхронизации начала регистрации сигнала с приемной антенны и начала ее перемещения в нормальной плоскости над поверхностью покрытия. Кроме того, для сканирования заданной области покрытия требуется значительное время, так как последовательная ориентация приемных антенн Е- и Н-волн в пределах заданной области сканирования и измерение значений сигнала с них осуществляется оператором.
Техническим результатом предлагаемого изобретения является повышение быстродействия и надежности устройства, увеличение точности измерения электрофизических параметров покрытия, вероятности обнаружения неоднородностей покрытия, а также расширение его функциональных возможностей.
Технический результат достигается тем, что в устройство для измерения электромагнитных параметров диэлектрических и магнитодиэлектрических покрытий на металле, состоящее из последовательно соединенных генератора СВЧ, блока коммутации антенн, имеющего N-выходов, а также N-антенн возбуждения медленных поверхностных волн, размещенных в азимутальной плоскости по кругу, при этом n-выход блока коммутации, где , соединен с входом соответствующей антенны, приемной антенны Е-волн и приемной антенны Н-волн, дополнительно введены последовательно соединенные блок управления, блок синхронизации, механизм перемещения, взаимодействующий с приемными антеннами, а также блок обработки сигналов, при этом второй, третий и четвертый выходы блока управления соединены со входом СВЧ-генератора, вторым входом блока коммутации антенн, вторым входом механизма перемещения соответственно, выходы приемных антенн соединены с первым и вторым входом блока обработки сигналов соответственно, а второй выход устройства синхронизации соединен с третьим входом блока обработки сигналов.
Схема устройства для измерения электрофизических параметров и обнаружения неоднородностей в диэлектрических и магнитодиэлектрических покрытиях на металле показана на фиг. 1, где введены следующие обозначения: 1 - генератор СВЧ, 2 - блок коммутации антенн, 3 - N-антенн возбуждения медленных поверхностных волн, размещенных в азимутальной плоскости по кругу, 4 - приемная антенна Е-волн, 5 - приемная антенна Н-волн, 6 - блок управления, 7 - блок синхронизации, 8 - механизм перемещения, 9 - блок обработки сигналов.
Блок управления предназначен для:
- автоматического переключения выходов блока коммутации антенн 2;
- автоматической установки рабочей частоты генератора СВЧ 1;
- формирования цифрового кода для включения блока синхронизации 8;
- формирования сигналов для автоматического управления механизмом перемещения 9.
Перед началом проведения измерений в блок управления 6 загружаются исходные данные: частота генератора СВЧ, координаты перемещения приемных антенн Е- и Н-волн в пределах каждой из N-антенн поверхностных волн, а также управляющая программа. Управляющая программа предназначена для автоматического управления работой устройства.
Блок управления может быть реализован на основе микроконтроллерных систем, например на основе микроконтроллера типа ATmega2560 [Рюмик С.М. 1000 и одна микроконтроллерная схема. Выпуск 2. М.: Издательский дом «Додэка-XXI». 2011].
Установка частоты генератора СВЧ 1 может быть осуществлена, например, путем подачи цифрового кода соответствующего заданной частоте с микроконтроллера блока управления 6, на управляющие регистры генератора СВЧ 1 [Direct Modulation / Generating. 6,1 GHz Fractional-N Frequency Synthesizer. [Электронный ресурс] URL: http://www.analog.com/media/en/technical-documentation/data-sheets/ADF4158.pdf (Дата обращения: 14.04.2015)]. Генератор СВЧ может быть построен на основе микросхем типа HMC586LC4B и ADF4158.
Автоматическое переключение выходов блока коммутации антенн 2 может быть осуществлено, например, путем подачи цифрового кода, соответствующего заданному выходу, с блока управления 6.
При этом блок коммутации антенн может быть реализован на основе дешифратора с использованием микросхем типа SN74LS145N. Соединение микроконтроллера блока управления 6 с блоком коммутации антенн 2 может быть осуществлено, например, путем сопряжения микроконтроллера блока управления 6 с дешифратором блока коммутации антенн 2 по одному из вариантов схем, приведенных в [Рюмик С.М. 1000 и одна микроконтроллерная схема. Выпуск 2. М.: Издательский дом «Додэка-ХХ1». 2011. С. 210-212].
Механизм перемещения предназначен для перемещения приемных антенн Е- и Н - волн в трехмерной системе координат в заданной области сканирования. Измерение электрического поля антеннами Е- и Н-волн поверхностной волны может быть осуществлено по принципам измерения поля в дальней зоне передающей антенны [Цейтлин Н.М. Методы измерения характеристик антенн СВЧ. М.: Радио и связь, 1985. С. 71-90].
При этом механизм перемещения может быть реализован, например, на основе системы из трехшаговых двигателей. Каждый из них перемещает приемную антенну Е- и Н-волн по координатам X, Y, Z соответственно [Дж. Вильямс. Программируемые роботы. Создаем робота для своей домашней мастерской. М.: NT Press, 2006. С. 127-167]. Механизм перемещения приемных антенн может быть построен на основе шаговых электродвигателей типа High-Resolution Type РК246РВ фирмы Orientalmotor и микросхем L297, L298N и LMD18T245.
Управление шаговыми двигателями механизма перемещения 8 с блока управления 6 может быть реализовано путем подачи управляющих сигналов с портов ввода-вывода микроконтроллера блока управления 6 [Рюмик СМ. 1000 и одна микроконтроллерная схема. Выпуск 2. М.: Издательский дом «Додэка-ХХ1». 2011. С. 176-178].
Блок обработки сигналов 9 предназначен для измерения значений напряженности поля поверхностной волны с выходов приемных антенн Е и Н-волн в пределах заданных координат сканирования; сохранения полученных значений в массив напряженностей поля поверхностной волны, вычисления на основе полученного массива коэффициентов затухания αj поля поверхностной волны, дисперсии коэффициентов затухания Dα и определение на их основе по известным алгоритмам электрофизических параметров, обнаружение и оценка неоднородностей покрытия [Федюнин П.А., Казьмин А.И. Способы радиоволнового контроля параметров защитных покрытий авиационной техники. М: Физматлит, 2013; Свидетельство об официальной регистрации программ для ЭВМ №2009611261 Российская Федерация. Определение параметров диэлектрических и магнитодиэлектрических покрытий на основе многопараметрической обработки пространственно-временной структуры электромагнитного поля поверхностной медленной волны зарегистрировано в Реестре программ для ЭВМ 27.02.2009].
Блок обработки сигналов может быть реализован, например, на основе детекторных СВЧ-диодов, аналогово-цифрового преобразователя, микроконтроллера и персональной электронной вычислительной машины (ПЭВМ) [Branislav Korenko и Marek Cerny. Автономный цифровой вольтметр на многоканальном АЦП. Электронный журнал Радиолоцман, ноябрь 2012. С. 67-70. URL: http://www.rlocman.ru/book/book.html?di=144227. (Дата обращения: 14.04.2015)].
Блок синхронизации 7 предназначен для одновременного включения в работу аналогово-цифрового преобразователя блока обработки сигналов 9 и механизма перемещения приемных антенн 8. Блок синхронизации, например, может быть реализован на основе микроконтроллера. При этом синхронизация осуществляется путем одновременной подачей цифрового кода с портов ввода-вывода микроконтроллера блока управления 6 на механизм перемещения 8 и блок обработки сигналов 9. Одновременная подача сигналов на порты ввода-вывода микроконтроллера устройства синхронизации 7 осуществляется на основе собственного внутреннего тактового сигнал [Белов А.В. Самоучитель разработчика устройств на микроконтроллерах AVR. М.: Наука и техника, 2008. С. 358-363].
Предлагаемое устройство для измерения электрофизических параметров и обнаружения неоднородностей в диэлектрических и магнитодиэлектрических покрытиях на металле работает следующим образом.
Перед началом проведения измерений в блок управления 6 загружаются исходные данные: частота генератора СВЧ, координаты перемещения приемных антенн Е- и Н-волн в пределах каждой из N-антенн поверхностных волн, а также управляющая программа. Начинается последовательное выполнение управляющей программы блоком управления 6.
Производится установка рабочей частоты генератора СВЧ 1, путем подачи цифрового кода, соответствующего заданной частоте с блока управления 6 на управляющие регистры генератора СВЧ 1.
Производится активизация первого выхода блока коммутации антенн путем подачи цифрового кода, соответствующего первому выходу, с блока управления 6. При этом первая из N-антенн поверхностных волн включается в работу.
Первой из N-антенн поверхностных волн производится возбуждение Е-волны поверхностной электромагнитной волны в слое исследуемого покрытия на длине волны λ1. Блок синхронизации 8 формирует цифровой код для синхронизированного одновременного включения в работу блока обработки сигналов 6 и механизма перемещения 9. Это позволяет синхронизировать момент начала перемещения приемной антенны Е-волн и начала измерения ей информативного сигнала, пропорционального напряженности поля поверхностной медленной волны. Производится перемещение приемной антенны Е-волн с помощью управляющих сигналов с блока управления 6 механизмом перемещения 8, в пределах заданных координат сканирования первой из N-антенн поверхностных волн и измерение ей при этом напряженности поля поверхностной волны.
Сигнал, пропорциональный напряженности поля поверхностной волны, с приемной антенны Е-волн поступает на второй вход блока обработки сигналов, где производится детектирование СВЧ-сигнала, пропорционального напряженности поля поверхностной волны, преобразование его в цифровой код и сохранение полученных значений в массив напряженностей поля поверхностной Е-волны на длине волны λ1.
В блоке управления 6 проверяется, во всех ли заданных координатах в пределах первой из N-антенн поверхностных волн проведены измерения с помощью антенны Е-волн 4, путем сравнения координат перемещения антенны, загруженных в блок управления перед началом измерения, с текущими координатами антенны в процессе проведения измерений.
Если измерения в пределах первой из N-антенн поверхностных волн в заданных координатах завершены, то производится возбуждение поверхностной Е-волны на длине волны λ2 и повторяется алгоритм, рассмотренный выше, только для длины волны λ2.
После полного сканирования поверхности в пределах первой из N-антенн поверхностных волн в заданных координатах на длине волны λ2 производится возбуждение поверхностной Н-волны на длине волны λ3, и повторяется алгоритм, рассмотренный выше, только для длины волны λ3 и при этом измерения проводятся антенной Н-волн 5.
Далее производится активизация второго выхода блока коммутации антенн путем подачи цифрового кода, соответствующего второму выходу, с блока управления 6. При этом вторая из N-антенн поверхностных волн включается в работу, а первая отключается и повторяется алгоритм работы управляющей программы, рассмотренный выше, только для второй антенны возбуждения поверхностных волн.
Аналогично активизацией выходов блока коммутации антенн производится последовательное включение остальных N-антенн поверхностных волн.
Алгоритм работы устройства для каждой из N антенн поверхностных волн аналогичен рассмотренным выше.
После полного выполнения управляющей программы блоком управления 6 на основе массива, сохраненного в блоке обработки сигналов 9, вычисляются значения коэффициентов затухания αj поля поверхностной волны, дисперсии коэффициентов затухания Dα, и на их основе определяются электрофизические параметры, и производится обнаружение и оценка неоднородностей покрытия.
Таким образом, используется синхронизированное аппаратно-программное управление процессом измерения напряженности поля поверхностной волны, что позволяет повысить быстродействие и надежность устройства, расширить его функциональные возможности, а также увеличить точность измерения электрофизических параметров покрытия и вероятность обнаружения в нем неоднородностей.
Изобретение относится к СВЧ-технике и может быть использовано для определения электрофизических параметров и неоднородностей диэлектрических покрытий на поверхности металла. Повышение быстродействия и надежности СВЧ-устройства для измерения электрофизических параметров, увеличение точности измерения и вероятности обнаружения неоднородностей покрытия является техническим результатом изобретения. СВЧ-устройство для измерения электромагнитных параметров диэлектрических и магнитодиэлектрических покрытий на металле состоит из последовательно соединенных генератора СВЧ, блока коммутации антенн, имеющего N-выходов, N-антенн возбуждения медленных поверхностных волн, размещенных в азимутальной плоскости по кругу, при этом n-выход блока коммутации, где , соединен с входом соответствующей антенны, приемной антенны Е-волн и приемной антенны Н-волн, а также из последовательно соединенных блока управления, блока синхронизации, механизма перемещения, взаимодействующих с приемными антеннами, а также блока обработки сигналов, при этом второй, третий и четвертый выходы блока управления соединены со входом СВЧ-генератора, вторым входом блока коммутации антенн, вторым входом механизма перемещения соответственно, а выходы приемных антенн соединены с первым и вторым входом блока обработки сигналов соответственно, при этом второй выход устройства синхронизации соединен с третьим входом блока обработки сигналов. 1 ил.
СВЧ-устройство для измерения электрофизических параметров и обнаружения неоднородностей в диэлектрических и магнитодиэлектрических покрытиях на металле, состоящее из последовательно соединенных генератора СВЧ, блока коммутации антенн, имеющего N-выходов, а также N-антенн возбуждения медленных поверхностных волн, размещенных в азимутальной плоскости по кругу, при этом n-выход блока коммутации, где , соединен с входом соответствующей антенны, приемную антенну E-волн и приемную антенну H-волн, отличающееся тем, что дополнительно введены последовательно соединенные блок управления, блок синхронизации, механизм перемещения, взаимодействующий с приемными антеннами, а также блок обработки сигналов, при этом второй, третий и четвертый выходы блока управления соединены со входом СВЧ-генератора, вторым входом блока коммутации антенн, вторым входом механизма перемещения соответственно, выходы приемных антенн соединены с первым и вторым входом блока обработки сигналов соответственно, а второй выход устройства синхронизации соединен с третьим входом блока обработки сигналов.
СВЧ-СПОСОБ ИЗМЕРЕНИЯ ЭЛЕКТРОМАГНИТНЫХ ПАРАМЕТРОВ ДИЭЛЕКТРИЧЕСКИХ И МАГНИТОДИЭЛЕКТРИЧЕСКИХ ПОКРЫТИЙ НА МЕТАЛЛЕ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2003 |
|
RU2273839C2 |
СВЧ СПОСОБ ОБНАРУЖЕНИЯ И ОЦЕНКИ НЕОДНОРОДНОСТЕЙ В ДИЭЛЕКТРИЧЕСКИХ ПОКРЫТИЯХ НА МЕТАЛЛЕ | 2012 |
|
RU2507506C2 |
СВЧ СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ И КОМПЛЕКСНОЙ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ДИЭЛЕКТРИЧЕСКИХ ПОКРЫТИЙ | 2003 |
|
RU2256168C2 |
CN 202166623 U,14.03.2012 | |||
RU 94026120 A1, 20.05.1996. |
Авторы
Даты
2016-08-20—Публикация
2015-05-19—Подача