Изобретение относится к способам формирования модулированных импульсных сигналов для усилительных и генераторных устройств гидроакустических передающих трактов ультразвукового диапазона.
Современной тенденцией развития передающих трактов ультразвукового диапазона частот, в частности для режимов освещения ближней обстановки гидроакустических комплексов, является внедрение цифровых методов генерации сигналов на основе цифрового формирования модулированных импульсных последовательностей с последующим ключевым усилением импульсов и выделением на излучающей антенне сигналов возбуждения с заданным амплитудным и фазовым распределением [1]. В этой области все большее распространение получают способы цифрового формирования широтно-модулированных сигналов, описанные, например, в патентах [2-4], применяемые для реализации ключевых усилителей мощности [5].
В известных устройствах [2, 3] используется преобразование цифрового кода входного сигнала в длительность модулированных импульсов с постоянной частотой следования. Сигнал с широтно-импульсной модуляцией (ШИМ) формируется в известных устройствах [2, 3] с использованием счетчиков-синхроимпульсов с частотами синхронизации, формирующих временные интервалы пропорциональные цифровому коду входного сигнала в тактовые моменты записи.
В устройстве функционального преобразования ШИМ-сигналов [2] формируется односторонняя модуляция второго рода, характеризующаяся значительным уровнем гармонических искажений, особенно при малом соотношении частоты ШИМ ω к частоте усиливаемого сигнала Ω. Так при соотношении ω/Ω<10 гармонические искажения превышают 10% [5].
Для цифрового широтно-импульсного модулятора по патенту [3], реализующего двухстороннюю ШИМ второго рода, характерен улучшенный спектральный состав модулированного импульсного сигнала, обусловленный отсутствие четных гармоник, что приводит к уменьшению гармонических искажений. Для ω/Ω=6…10 в известном устройстве коэффициент гармоник не превышает 2-3%.
Основным недостатком известных устройств [2, 3] является значительное проникновение комбинационных составляющих спектра импульсных сигналов с частотами (ω-nΩ) в область частот усиливаемого сигнала при уменьшении частоты ШИМ. При малочисленном отношении частот ω/Ω<6 коэффициент комбинационных искажений превышает 10% [5].
Уменьшить комбинационные искажения модулированного импульсного напряжения в устройстве, описанном в патенте [4], позволяет применение двухканальной ШИМ для управления двухканальным ключевым усилителем мощности (КУМ), выполненным, например, по мостовой схеме. Сложение двух импульсных сигналов с ШИМ в диагонали мостовой схемы КУМ формирует суммарное импульсное напряжение с удвоенной частотой переключений. Комбинационные составляющие спектра суммарного импульсного напряжения группируются вокруг гармоник суммарной частоты, равной 2ω, что приводит к более чем двукратному уменьшению коэффициента комбинационных искажений. Однако дальнейшее повышение частоты усиливаемого сигнала в известном устройстве [4] приводит к значительному росту комбинационных и гармонических искажений, что препятствует его использованию в КУМ ультразвукового диапазона частот.
Наиболее близким к предлагаемому изобретению является способ цифрового формирования ШИМ-сигналов, описанный в патенте РФ 2308800 [6]. В известном техническом решении предложен принцип реализации цифрового широтно-импульсного модулятора с распределенной спектральной характеристикой, что достигается изменением частоты переключений ШИМ-сигналов.
Известный способ цифрового формирования ШИМ-сигналов основан на формировании частотно-модулированного пилообразного цифрового сигнала, его сравнении с цифровым входным сигналом и формировании по результату сравнения последовательности широтно-модулированных импульсов, причем модуляция частоты пилообразного сигнала осуществляется по псевдослучайному закону, чем достигается распределение спектральной характеристики комбинационных составляющих спектра модулированного ШИМ-сигнала.
Достоинством способа-прототипа является реализация возможности дополнительной частотной модуляции ШИМ-сигналов, что позволяет обеспечить изменение частоты комбинационных составляющих спектра.
Однако при изменении частоты пилообразного цифрового сигнала по псевдослучайному закону распределение спектральной характеристики комбинационных составляющих сопровождается увеличением комбинационных искажений ШИМ-сигнала. Отмеченное обстоятельство усугубляется в способе-прототипе формированием одностороннего (нарастающего) пилообразного цифрового сигнала, что приводит к росту как комбинационных искажений, так и, в случае модуляции второго рода [5], к значительным гармоническим искажениям, величина которых превышает 10% при отношении частот ω/Ω≤10.
Способ-прототип может быть реализован в известном устройстве [6], содержащем последовательно соединенные генератор частотно-модулированных импульсов, частота которого изменяется по псевдослучайному закону, регистр памяти и цифровой компаратор, другой вход которого соединен с шиной цифрового сигнала, а выход - с выходом устройства, причем вход синхронизации генератора частотно-модулированных импульсов подключен к шине частоты синхронизации.
Генератор частотно-модулированных импульсов может быть реализован алгоритмически и аппаратно с использованием генератора псевдослучайных чисел, двух цифровых блоков переключения, цифрового сумматора и дополнительного регистра памяти.
При этом частота частотно-модулированных импульсов изменяется по псевдослучайному закону в полосе от fmin до fmax, что соответствует изменению частоты пилообразного цифрового сигнала и, соответственно, частоты ШИМ-сигнала в диапазоне ωmin<ω<ωmax при ωmin=2πfmin/β; ωmax=2πfmax/β, где β - коэффициент деления тактовой частоты, установленный регистром памяти в режиме счетчика импульсов.
Число β определяет дискретность изменения цифрового пилообразного напряжения и соответственно дискретность изменения и динамический диапазон ШИМ цифрового входного сигнала. При динамическом диапазоне более 40 дБ целочисленная величина должна быть более 100. В известном цифровом широтно-импульсном модуляторе [6] задается для каждого периода ШИМ TШИМ по псевдослучайному закону. Причем с уменьшением периода TШИМ уменьшается число β и, соответственно, для заданной амплитуды цифрового пилообразного напряжения увеличивается шаг дискретизации ШИМ. Последнее обстоятельство приводит к дополнительному понижению точности формирования широтно-модулированных импульсных сигналов.
Недостатки известного способа, связанные с пониженными показателями качества формирования широтно-модулированных сигналов, особенно в верхнем частотном диапазоне, при малом соотношении частоты ШИМ и частоты формируемого сигнала, ограничивают возможности способа-прототипа в гидроакустических передающих трактах. Указанные недостатки особенно сильно сказываются при использовании способа-прототипа в усилительных и генераторных устройствах в ГАС ОБО, поскольку особенностью библиотеки сигналов, генерируемых в режимах ОБО, является использование гармонических частотомодулируемых колебаний относительной полосой частот 0,3-0,5 октавы. Это объясняется тем, что для реализации трактов ультразвукового диапазона частот, например для гидроакустических станций (ГАС) освещения ближней обстановки (ОБО), необходимо дальнейшее развитие способа цифрового формирования широтно-модулированных импульсных сигналов, направленное на уменьшение искажений в условиях минимизации отношения частот модулирующего воздействия (входного цифрового сигнала) и частоты следования импульсов с ШИМ.
Цифровой синтез таких сигналов для гидроакустических передающих трактов предполагает постоянство частоты в каждый отдельный период колебания согласно известному цифровому коду, использование которого возможно для оптимизации ШИМ.
Задачей изобретения является улучшение характеристик качества формирования широтно-модулированных импульсных сигналов при повышении энергоэффективности генераторных устройств ультразвукового диапазона, что особенно важно в гидроакустических комплексах объектового базирования.
Технический результат от использования изобретения заключается в уменьшении искажений ультразвуковых сигналов при минимизации потерь энергии в генераторных устройствах посредством уменьшения частоты ШИМ.
Для достижения указанного технического результата в известный способ формирования широтно-модулированных импульсных сигналов, основанный на формировании частотно-модулированного пилообразного цифрового сигнала, его сравнении с цифровым входным сигналом и формировании по результату сравнения последовательности широтно-модулированных импульсов, введены новые признаки, а именно: частотно-модулированный пилообразный сигнал изменяют по частоте пропорционально частоте цифрового входного сигнала из условия целочисленного отношения частот.
При этом в спектре последовательности широтно-модулированных импульсов исключаются комбинационные составляющие, частоты которых не совпадают с частотами гармоник входного цифрового сигнала, что обеспечивает подавление комбинационных искажений и позволяет улучшить качество формирования широтно-модулированного импульсного сигнала.
Дополнительное улучшение качества формирования широтно-модулированного импульсного сигнала в условиях понижения частоты ШИМ достигается в заявляемом способе введением дополнительных новых признаков, а именно: частотно-модулированный цифровой сигнал формируют в виде симметричных прямого и инверсного пилообразных сигналов, по результату сравнения которых с цифровым входным сигналом формируют последовательность широтно-модулированных импульсов в виде первой и второй однотактных последовательностей широтно-модулированных импульсов, ключевое сложение которых обеспечивает формирование двухтактной последовательности разнополярных широтно-модулированных импульсов.
Совокупность новых признаков в заявляемом способе позволяет обеспечить цифровое формирование широтно-модулированного сигнала с целочисленным отношением частоты ШИМ ω и частоты цифрового входного сигнала Ω в диапазоне от 10 до 3 с гармоническими искажениями не более 0,3…3% при динамическом диапазоне 40 дБ. Для области ультразвуковых частот наибольший интерес представляет цифровое формирование двух последовательностей импульсов с симметричной ШИМ, при усилении и суммировании которых известной мостовой схемой КУМ [4] обеспечивается удвоение суммарной частоты переключений результирующей двухтактной импульсной последовательности. При этом достигается удовлетворительное качество результирующего импульсного напряжения (нелинейные искажения не более 3%) для минимального отношения частот ω/Ω=3.
В результате применения заявляемого способа в условиях минимального отношения частот обеспечивается возможность уменьшения потерь энергии на переключение не менее чем в 3 раза по сравнению с известными техническими решениями. Выделенное обстоятельство имеет принципиальное значение для повышения энергетической эффективности трактов ультразвукового диапазона частот, применяемых в составе ГАС ОБО.
Сущность изобретения поясняется фиг. 1, 2, на которых приведены структурные схемы устройств, реализующих заявляемый способ цифрового формирования широтно-модулированного импульсного сигнала, и фиг. 3, 4, на которых представлены фонограммы сигналов, поясняющие их работу. Спектрограммы импульсных сигналов, сформированных согласно заявленному способу для синхронного и фиксированного значения частоты ШИМ, иллюстрируются на фиг. 5а, б.
Устройство цифрового формирования широтно-модулированного импульсного сигнала (фиг. 1) содержит регистр 1 памяти, частотно-модулированный генератор 2, цифровой счетчик 3 и цифровой компаратор 4.
Связь устройства с формирователем цифрового сигнала осуществляется по шине синхроимпульсов частотой F, по шине цифрового входного сигнала (Код Вход), по шине кода частоты входного сигнала (Код Частота).
Регистр 1 памяти соединен входом с шиной Код Частота и обеспечивает регистрацию кода по импульсу с выхода переноса цифрового счетчика 3, поступающего на вход записи регистра 1 памяти в конце каждого цикла формирования цифрового пилообразного напряжения.
Цифровой сигнал Код Частота устанавливается пропорциональным периоду входного цифрового сигнала и поступает с выхода регистра 1 памяти на вход управления частотно-модулированного генератора 2.
Выходной сигнал частотно-модулированного генератора 2 формируется посредством деления частоты синхроимпульсов в соответствии с размерностью цифрового сигнала Код Частота. Таким образом на вход синхронизации цифрового счетчика 3, соединенного с выходом частотно-модулированного генератора 2, поступает импульс с периодом Tc, пропорциональным периоду TS цифрового входного сигнала. Цифровой счетчик 3 формирует цифровой пилообразный сигнал с дискретностью, заданной постоянным коэффициентом деления β и заданной постоянной амплитудой AP.
В результате период TP цифрового пилообразного сигнала устанавливается равным:
где α - коэффициент деления частотно-модулированного генератора, пропорциональный значению сигнала Код Частота;
β - постоянный коэффициент деления цифрового счетчика;
T0 - период синхроимпульсов.
Реализация заявляемого способа основана на выполнении условия целочисленного отношения периода цифрового входного сигнала к периоду цифрового пилообразного сигнала заданного значения:
Выделенное условие определяет ограничения для установки периода цифрового входного сигнала при заданных значениях α, β, γ и общей шине синхроимпульсов с периодом T0:
Для неизменных значений γ, β точность установки TS должна определяться размерностью цифрового сигнала Код Частота.
Особенностью реализации устройства (фиг. 2) является формирование цифровым счетчиком двух противофазных симметричных цифровых пилообразных сигналов, каждый из которых сравнивается с цифровым входным сигналом. В результате формируются две последовательности широтно-модулированных импульсов, суммирование которых по известным правилам [4] позволяет получить двухтактную последовательность разнополярных импульсов с удвоенной частотой переключения.
Способ цифрового формирования широтно-модулированных сигналов для гидроакустики целесообразно рассматривать совместно с описанием работы реализующих его устройств (фиг. 1, фиг. 2) и диаграмм сигналов, поясняющих их принцип действия.
В устройстве, представленном на фиг. 1, для реализации заявляемого способа обеспечивается формирование одностороннего нарастающего пилообразного цифрового сигнала VP из условия:
где tk, tk+1 определяют начало и окончание интервала формирования пилообразного цифрового сигнала.
Для цифровых сигналов функция текущего времени представляется дискретной функцией изменения временных интервалов в виде:
где
tН - начальный момент времени;
Tpk - k-й период пилообразного цифрового сигнала;
K - количество периодов пилообразного цифрового сигнала в периоде цифрового сигнала в периоде цифрового входного сигнала;
N - количество дискретных шагов в периоде пилообразного цифрового сигнала;
k, n - текущие значения дискретных интервалов.
Выполнение условий (1), (2), (3) обеспечивает целочисленное количество периодов Tpk пилообразного цифрового сигнала в периоде цифрового сигнала, что соответствует признакам заявляемого способа. При этом обеспечиваются равенства N=β, K=γ.
Таким образом, в результате сравнения пилообразного цифрового сигнала VP с периодическим входным цифровым сигналом формируется последовательность широтно-модулированных импульсов PWM:
Вследствие обеспечения целочисленного отношения Ts/Tp=γ период модулированной импульсной последовательности равен периоду входного цифрового сигнала.
Для входного цифрового сигнала, изменяющегося по гармоническому закону, отмеченное условие исключает из спектра широтно-модулируемых сигналов комбинированные составляющие с частотами, не совпадающими с частотой гармоник, чем достигается улучшение показателей качества формирования широтно-модулированного импульсного сигнала.
Реализация дополнительных преимуществ заявляемого способа формирования широтно-модулированных импульсных сигналов, обеспечивающих минимизацию частоты переключений при использовании двухканальной симметричной ШИМ, достигается в устройстве, представленном на фиг. 2. В состав устройства (фиг. 2), содержащего регистр 1 памяти, частотно-модулированный генератор 2, цифровой счетчик 3, компаратор 4, введен дополнительный компаратор 5, а цифровой счетчик 3 выполнен реверсивным, имеет прямой и инверсный выходы, соединенные соответственно с входами компараторов 4 и 5, другие входы, которые подключены к шине цифрового входного сигнала. На выходах компараторов 4 и 5 обеспечивается формирование первой и второй последовательностей широтно-модулированных импульсов (PWM1 и PWM2).
Согласно временным диаграммам, представленным на фиг. 4, цифровое формирование двух последовательностей широтно-модулированных импульсов с симметричной ШИМ осуществляется следующим образом. Реверсивный цифровой счетчик 3 при выполнении условий (1), (2), (3), определяющих целочисленное отношение частоты ШИМ и частоты цифрового сигнала, формирует два симметричных противофазных пилообразных цифровых сигнала VP1, VP2 (фиг. 4).
С учетом дискретной функции изменения временных интервалов (4) симметричные пилообразные сигналы VP1 и VP2 определяются следующим соотношением:
В результате сравнения цифровых сигналов VP1 и VP2 с цифровым входным сигналом S обеспечивается формирование двух модулированных импульсных последовательностей PW1, PW2, соответствующих симметричной двухканальной ШИМ (фигура 4):
Сформированные импульсные сигналы PW1, PW2 могут быть использованы по известным правилам для управления двухканальным КУМ, например выполненным по мостовой схеме [4]. В результате формируется суммарное импульсное напряжение VPWM с частотой следования импульсов в два раза выше частоты исходных сигналов PWM1 и PWM2,
Реализация дополнительных признаков заявляемого способа цифрового формирования широтно-модулированных импульсных сигналов, обеспеченная в устройстве (фиг. 2), позволяет обеспечить минимизацию целочисленного отношения частоты ШИМ при улучшенных показателях качества суммарного импульсного сигнала. С учетом удвоения частоты суммарного импульсного напряжения может быть реализовано минимальное отношение частот ω/Ω=3. При этом в спектре суммарной модулированной импульсной последовательности присутствуют только нечетные гармоники модулирующего гармонического сигнала, причем относительный уровень третьей гармоники, определяющей основные гармонические искажения, не превышает 3-5% в динамическом диапазоне 30-40 дБ.
Выделенные преимущества заявляемого способа обеспечивают уменьшение искажений ультразвуковых сигналов при минимизации потерь энергии в генераторных устройствах за счет минимизации частоты ШИМ, что делает целесообразным внедрение предлагаемого технического решения в передающие тракты ГАС ОБО.
На нашем предприятии изготовлен и проходит испытания опытный образец многоканального цифрового генераторного устройства, в одном из режимов работы которого реализован предлагаемый способ цифрового формирования широтно-модулированных импульсных сигналов. Проведена оценка спектрального состава импульсного сигнала с двухканальной симметричной ШИМ при модуляции гармоническим частотно-модулированным сигналом с относительной полосой модуляции 0,3 октавы в условиях использования способа с постоянной частотой ШИМ и заявляемого способа с синхронизацией частоты ШИМ с частотой модулирующего сигнала из условия целочисленного отношения частот. Спектрограммы импульсных сигналов при частоте ω≈5Ω приведены на фиг. 5 для синхронной частоты ШИМ (фиг. 5.а) согласно заявляемому способу и для фиксированной частоты ШИМ (фиг. 5.б).
Сопоставительный анализ спектров импульсных сигналов убедительно показывает преимущества предлагаемого технического решения.
В случае ШИМ с фиксированной частотой ближайшая гармоника (Ω3=352) достигает -30 дБ от уровня полезного сигнала (Ω), в спектре присутствуют 5 гармоника -50 дБ и 7 гармоника -16 дБ, а также имеют место фоновые спектральные составляющие во всей полосе частот на уровне -60…-70 дБ.
Применение синхронной ШИМ позволяет значительно улучшить структуру спектра импульсного сигнала: относительная величина 3-й гармоники не превышает -42 дБ; 5-я гармоника отсутствует; 7-я гармоника составляет менее -27 дБ. Важным обстоятельством является отсутствие фоновых комбинационных составляющих спектра.
Приведенный пример подтверждает возможность уменьшения нелинейных искажений импульсных сигналов в 3-4 раза при внедрении заявляемого способа цифрового формирования в условиях минимизации частоты переключения, что принципиально для внедрения в ультразвуковые гидроакустические передающие тракты, например используемые в ГАС ОБО.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Александров В.А., Потапов А.И. Новый тип генераторного устройства для режима освещения ближней обстановки. - Сборник трудов X всероссийской конференции Прикладные технологии гидроакустики и гидрофизики, СПб.: Наука, 2010 г., с. 160-163.
2. Патент РФ №2237920. Устройство для функционального преобразования ШИМ-сигналов, опубл. 10.10.2004.
3. Патент РФ №2172062. Цифровой широтно-импульсный модулятор, опубл. 10.08.2001.
4. Патент США №2004212524. PWM signal generator and PWM signal generating method, опубл. 28.10.2004.
5. Кибакин B.M. Основы ключевых методов усиления. - М.: Энергия, 1980, 232 с.
6. Патент РФ №2308800. Цифровой широтно-импульсный модулятор с распределенной спектральной характеристикой, опубл. 20.10.2007.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ЦИФРОВОГО УПРАВЛЕНИЯ КЛЮЧЕВЫМ ГЕНЕРАТОРНЫМ УСТРОЙСТВОМ УЛЬТРАЗВУКОВОГО ДИАПАЗОНА | 2019 |
|
RU2718003C1 |
ДВУХКАНАЛЬНЫЙ УСИЛИТЕЛЬ КЛАССА D | 2001 |
|
RU2188498C1 |
ГЕНЕРАТОРНОЕ УСТРОЙСТВО ДЛЯ ВОЗБУЖДЕНИЯ УЛЬТРАЗВУКОВЫХ ИЗЛУЧАТЕЛЕЙ | 2015 |
|
RU2644118C1 |
Канал низкочастотного ключевого усиления | 2023 |
|
RU2816509C1 |
УСИЛИТЕЛЬ КЛАССА ABD ДЛЯ ГИДРОАКУСТИКИ | 2013 |
|
RU2526280C1 |
Усилитель класса D | 2022 |
|
RU2794346C1 |
МНОГОКАНАЛЬНЫЙ ШИРОТНО-ИМПУЛЬСНЫЙ ПРЕОБРАЗОВАТЕЛЬ | 2020 |
|
RU2733782C1 |
Усилитель класса D с параметрическим управлением | 2022 |
|
RU2795793C1 |
СПОСОБ УПРАВЛЕНИЯ АВТОНОМНЫМ ИНВЕРТОРОМ НАПРЯЖЕНИЯ | 2016 |
|
RU2620129C1 |
ПЕРЕДАЮЩИЙ ТРАКТ ДЛЯ ВОЗБУЖДЕНИЯ ГИДРОАКУСТИЧЕСКОЙ АНТЕННЫ | 2019 |
|
RU2723463C1 |
Изобретение относится к области цифрового формирования модулированных импульсных сигналов для усилительных и генераторных устройств гидроакустических передающих трактов ультразвукового диапазона. Техническим результатом является уменьшение искажений ультразвуковых сигналов при минимизации потерь энергии посредством понижения частоты ШИМ. Это достигается тем, что при обеспечении целочисленного отношения
Способ цифрового формирования широтно-модулированных импульсных сигналов, включающий формирование частотно-модулированного пилообразного цифрового сигнала, его сравнение с цифровым входным сигналом и формирование по результату сравнения последовательности широтно-модулированных импульсов, отличающийся тем, что частотно-модулированный пилообразный цифровой сигнал формируют в виде симметричных прямого и инверсного пилообразных сигналов, с периодом ТР, с целочисленным отношением
US 20120074860 A1, 29.03.2012 | |||
US 6023199 A, 08.02.2000 | |||
US 5825257 A, 20.10.1998 | |||
US 20030095013 A1, 22.05.2003 | |||
WO 2010105291 A1, 23.09.2010 | |||
ЦИФРОВОЙ ШИРОТНО-ИМПУЛЬСНЫЙ МОДУЛЯТОР С РАСПРЕДЕЛЕННОЙ СПЕКТРАЛЬНОЙ ХАРАКТЕРИСТИКОЙ | 2006 |
|
RU2308800C9 |
Широтно-импульсный модулятор | 1988 |
|
SU1621159A1 |
Двухтактный широтно-импульсный модулятор | 1982 |
|
SU1075397A1 |
Авторы
Даты
2016-08-20—Публикация
2013-12-17—Подача