КОМПЛЕКСНЫЙ СКВАЖИННЫЙ ПРИБОР ДЛЯ ИССЛЕДОВАНИЯ СКВАЖИН В ПРОЦЕССЕ БУРЕНИЯ Российский патент 2016 года по МПК E21B47/00 

Описание патента на изобретение RU2595278C1

Изобретение относится к геофизической технике и может быть использовано при проведении геофизических исследований в процессе бурения при проводке горизонтальных и наклонно направленных нефтяных и газовых скважин совместно с забойными телеметрическими системами.

Данное изобретение позволяет повысить информативность, эффективность и качество измерений, в результате чего достигается технический эффект, заключающийся в улучшении эксплуатационных характеристик прибора, что позволяет оптимизировать процесс бурения горизонтальных и наклонно направленных нефтяных и газовых скважин.

Наиболее близким по технической сущности и достигаемому эффекту является комплексный скважинный прибор в процессе бурения, содержащий корпус, в котором установлено не менее двух приемных и двух передающих антенных узлов, соединенных с блоком электроники, корпус прибора выполнен в виде цельнометаллического цилиндра, внутри которого высверлены два продольных отверстия, одно из которых выполнено сквозным для пропуска бурового раствора, а в другом размещен блок электроники, отличающийся тем, что каждый антенный узел содержит антенный провод, содержащий не менее чем один виток, резонансный конденсатор, съемную гильзу для установки на внешней поверхности корпуса прибора, в боковых сторонах съемной гильзы выполнены продольные щели, в которых установлены ферритовые вставки, антенный провод проложен в кольцевой выемке на внутренней поверхности гильзы перпендикулярно ее щелям и соединен через гермовводы с электронным блоком измерения удельного электрического сопротивления горной породы, причем съемная гильза выполнена разрезной вдоль ее оси, изоляция антенного провода в кольцевой выемке выполнена путем плазменного напыления слоя керамики на основе смеси оксида алюминия и диоксида титана, а блок электроники содержит не менее двух передатчиков и не менее двух приемников, соединенных с измерителем удельного электрического сопротивления горной породы по разности фаз и отношению амплитуд принятых сигналов.

Недостатками прибора являются:

- отсутствие контроля механических усилий, воздействующих на прибор и возникающих в процессе перемещения его в стволе скважины;

- отсутствие контроля гидродинамических параметров флюидов в кольцевом пространстве между стенкой скважины и колонной бурильных труб.

Изобретение позволяет повысить информативность, эффективность и качество измерений в области определения геологических пластов непосредственно в процессе бурения скважин, что позволяет оптимизировать, координировать процесс бурения горизонтальных и наклонно направленных нефтяных и газовых скважин.

Технической задачей изобретения является улучшение эксплуатационных возможностей геофизического комплексного скважинного прибора в процессе бурения, увеличение эффективности и качества измерений в наклонно направленных и горизонтальных скважинах и расширение информативности прибора.

Указанная задача достигается тем, что в комплексном скважинном приборе в процессе бурения, содержащем корпус, в котором установлено не менее двух приемных и двух передающих антенных узлов, соединенных с блоком электроники, каждый антенный узел содержит антенный провод, содержащий не менее чем один виток, съемную гильзу для установки на внешней поверхности корпуса прибора, в боковых сторонах съемной гильзы выполнены продольные щели, антенный провод проложен в кольцевой выемке на внутренней поверхности гильзы перпендикулярно ее щелям и соединен через гермовводы с блоком электроники, внутри корпуса прибора размещена проточная труба, на которой в герметичной полости расположены модули блока электроники, как минимум в одном из антенных узлов под изолирующей гильзой располагается датчик силовых нагрузок, соединенный с блоком электроники, в цилиндрической полости на внешней поверхности корпуса расположен датчик давления в затрубном пространстве, соединенный с блоком электроники.

Датчик силовых нагрузок комплексного скважинного прибора в процессе бурения содержит совокупность тензорезисторов, соединенных по мостовым схемам.

Датчик давления в затрубном пространстве комплексного скважинного прибора в процессе бурения представляет собой металлический стакан, на нижней поверхности которого размещены тензорезисторы, внутри него установлена эластичная стойкая к абразиву пробка.

Новыми признаками прибора являются:

- установка датчика силовых нагрузок;

- установка датчика давления в затрубном пространстве.

Из анализа патентной и научно-технической литературы подобное решение не известно, что и позволяет сделать вывод о «Новизне» и «Изобретательском уровне» предлагаемого комплексного скважинного прибора.

На фиг. 1 представлен универсальный вариант конструкции предложенного технического решения комплексного скважинного прибора в процессе бурения, на фиг. 2 - конструкция его антенного узла, на фиг. 3 - структурная схема скважинного прибора, на фиг. 4 - конструкция датчика силовых нагрузок, на фиг. 5 - конструкция датчика давления в затрубном пространстве.

Комплексный скважинный прибор в процессе бурения встраивается непосредственно в колонну бурильных труб вблизи долота и содержит корпус 1, проточную трубу 2 для циркуляции бурового раствора, приемные антенные узлы 3, передающие антенные узлы 4, датчик давления 5, датчик силовых нагрузок 6. Внутри корпуса 1 на внешней поверхности проточной трубы 2 размещен блок электроники 16.

Передающий 4 и приемный 3 антенные узлы включают в себя изолирующую гильзу 7, провод соответственно 10 для передающего 4 и 11 для приемного антенного узла, размещенный в нарезанной на ней канавке, внешнюю проводящую обойму 8 со щелями с радиопрозрачными вставками 9. Датчик силовых нагрузок 6 располагается на корпусе прибора 1 под изолирующей гильзой 7.

Датчик силовых нагрузок 6 комплексного скважинного прибора в процессе бурения схемотехнически выполнен в виде мостовых схем (Панфилов В.А. Электрические измерения. - М.: Академия, 2008, стр. 255), входящие в состав которых тензорезисторы 12 расположены на поверхности корпуса 1 под изолирующей гильзой 7 для измерения сжатия-растяжения вдоль оси прибора и по окружности корпуса, перпендикулярно расположенным вдоль оси прибора, а для измерения изгиба - под углом к тензорезисторам для измерения сжатия-растяжения.

Датчик давления в затрубном пространстве 5 комплексного скважинного прибора в процессе бурения состоит из металлического стакана 13 с установленной внутри него эластичной стойкой к абразиву пробкой 13, на нижней поверхности металлического стакана размещены тензорезисторы 15.

Работа непосредственно модуля электромагнитного каротажа комплексного скважинного прибора в процессе бурения состоит в следующем. При установке прибора в колонну бурильных труб буровой раствор проходит через проточную трубу 2. Блок 16 электроники по заданной программе измерений вырабатывает сигналы управления передатчиками 17 и приемниками 18 электромагнитных волн. При этом передатчики 17 генерируют высокочастотные электрические сигналы, которые поступают на антенный провод 10 передающих антенных узлов 4. При этом антенный провод 10 через щели 9 проводящей обоймы 8 излучает электромагнитные волны, распространяющиеся через горную породу. Информация об удельном электрическом сопротивления (УЭС) горной породы, содержащаяся в амплитуде и фазе электромагнитной волны, регистрируется приемными антенными узлами 3. Сигналы, наведенные электромагнитной волной в проводах 11, с выходов антенных узлов 3 поступают на входы приемников 18 блока 16 электроники и далее на его измеритель 19 удельного электрического сопротивления горных пород и сигналов с внешних датчиков. Измерение электрического сопротивления горных пород в измерителе 19 осуществляется на основе измерения разности фаз и отношения амплитуд принятых сигналов от различных приемных антенных узлов по известной методике (US 5530358, G01V 3/10, 1996; RU 2392644, G01V 3/30, 2010). Измеренные значения электрического сопротивления горных пород при электромагнитном каротаже в процессе бурения скважин записываются в память измерителя 19 и передаются забойной телеметрической системой в процессе бурения на поверхность земли.

Деформация корпуса 1 комплексного скважинного прибора в области размещения датчика силовых нагрузок 6 приводит к изменению сопротивления тензорезисторов 12, а деформация дна металлического стакана 13 с установленной внутри него пробкой 14 под действием внутритрубного давления приводит к изменению сопротивления тензорезисторов 15.

Одновременно с измерением электрического сопротивления горных пород производится посредством датчиков 5 и 6 измерение давления в затрубном пространстве и силовых нагрузок, таких как усилия изгиба, сжатия-растяжения воздействующих на прибор. Это, в частности, позволяет прогнозировать критические ситуации, возникающие в процессе бурения.

Размещение датчика силовых нагрузок внутри антенного узла комплексного скважинного прибора в процессе бурения обеспечивает, с одной стороны, возможность контроля нагрузок в самом тонком месте корпуса, с другой стороны - герметизацию его совместно с элементами антенного узла.

Измерение сил, действующих на компоновку низа бурильной колонны (КНБК), частью которой и является комплексный скважинный прибор в процессе бурения, дает информацию о передаче энергии от поверхности до долота и динамической реакции КНБК в результате этих воздействий. Измерение нагрузок на бурильную колонну, включая измерение прочности на растяжение, сжатие и кручение, позволяет произвести расчет изгибающего момента утяжеленных бурильный труб (УБТ) с системой замера забойных параметров. Измерения позволяют определить фактическую массу и крутящий момент, действующие на долото, который имеет критическое значение при высоком угле и в скважинах с большими отходами, для обеспечения оптимальной производительности долота, качественного расширения ствола и предотвращения потери устойчивости бурильной колонны. Измерение веса и передачи крутящего момента также дает представление об эффективности очистки ствола. Динамическая нагрузка КНБК измеряется с целью предотвращения критических перегрузок и преждевременного выхода из строя скважинного оборудования, и когда эти измерения проводятся вместе с измерениями вибрации, они дают необходимую информацию, позволяющую в полной мере охарактеризовать динамику бурового процесса внутри скважины.

Измерение давления в затрубном пространстве во время буровых работ помогает предотвратить повреждения пласта из-за превышения давления гидроразрыва или из-за падения давления до достаточно низкого уровня, что может быть вызвано притоком пластовых флюидов в ствол скважины. Среди прочих серьезных проблем, возникающих в процессе бурения, можно выделить такие случаи, как приток мелкозалегающих вод или срабатывание датчиков, установленных в кольцевом пространстве. Измерение давления в затрубном пространстве позволяет получить точные данные о результатах испытаний соединений на герметичность и испытаний пласта на прочность посредством измерения давления, воздействующего на пласт с экономией времени, поскольку в этом случае отсутствует необходимость проводить циркуляцию и обработку бурового раствора перед проведением испытаний. Наличие точных параметров скважинного давления позволяет поддерживать циркуляционную систему в оптимальном состоянии с целью максимального увеличения скорости проходки.

Совместное измерение комплексным скважинным прибором в процессе бурения геофизических и технологических параметров непосредственно в процессе бурения позволяет повысить информативность получаемых данных.

Предлагаемое устройство реализовано при разработке и выпуске комплексной скважинной аппаратуры и опробовано в условиях месторождений Западной Сибири, что позволяет сделать вывод о «Промышленной применимости».

Данное устройство позволяет повысить качество и надежность процесса бурения скважин путем введения контроля за осевым усилием и давлением в затрубном пространстве, улучшить проходимость его в горизонтальных и наклонно направленных скважинах, повысить эффективность и качество измерений путем введения дополнительного измерения параметров по плоскости поперечного сечения скважины, в результате чего достигается технический эффект, заключающийся в расширении информативности и достоверности получаемой информации, что в конечном итоге ведет к улучшению эксплуатационных характеристик комплексного скважинного прибора и позволяет оптимизировать процесс бурения горизонтальных и наклонно направленных нефтяных и газовых скважин.

Похожие патенты RU2595278C1

название год авторы номер документа
ПРИБОР ЭЛЕКТРОМАГНИТНОГО КАРОТАЖА В ПРОЦЕССЕ БУРЕНИЯ 2010
  • Беляков Николай Викторович
  • Пестов Анатолий Николаевич
  • Бурсак Александр Васильевич
  • Шкадин Михаил Вениаминович
  • Яконовский Павел Александрович
RU2506611C2
КОМПЕНСИРОВАННЫЙ ПРИБОР ЭЛЕКТРОМАГНИТНОГО КАРОТАЖА В ПРОЦЕССЕ БУРЕНИЯ СКВАЖИН МАЛОГО ДИАМЕТРА 2009
  • Беляков Николай Викторович
  • Пестов Анатолий Николаевич
  • Бурсак Александр Васильевич
  • Шкадин Михаил Вениаминович
  • Яконовский Павел Александрович
RU2392644C1
УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ ИНФОРМАЦИИ ПРИ БУРЕНИИ С ЗАБОЯ СКВАЖИНЫ 2004
  • Баканов Юрий Иванович
  • Гераськин Вадим Георгиевич
  • Дмитриев Игорь Анатольевич
  • Захаров Андрей Александрович
  • Колесниченко Владимир Петрович
  • Кульчицкий Владимир Николаевич
  • Стрельцов Виктор Михайлович
  • Шостак Андрей Валерьевич
  • Снегирев Сергей Николаевич
RU2304719C2
КОМПЛЕКСНАЯ ГЕОФИЗИЧЕСКАЯ АППАРАТУРА НА БУРИЛЬНЫХ ТРУБАХ (ВАРИАНТЫ) 2009
  • Королев Владимир Алексеевич
  • Сугак Владимир Михайлович
RU2401944C1
Ретранслятор скважинной электромагнитной телеметрии 2021
  • Титоров Максим Юрьевич
  • Королев Владимир Алексеевич
  • Кульчицкий Владимир Николаевич
RU2778079C1
МНОГОЭЛЕМЕНТНАЯ ПРИЕМНАЯ АНТЕННА ПРИБОРА АКУСТИЧЕСКОГО КАРОТАЖА 2015
  • Мухамадиев Рамиль Сафиевич
  • Вершинин Андрей Георгиевич
  • Вершинин Святослав Андреевич
RU2598406C1
СПОСОБ ГЕОНАВИГАЦИИ ГОРИЗОНТАЛЬНЫХ СКВАЖИН И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2008
  • Теплухин Владимир Клавдиевич
RU2395823C2
Многокамерный пробоотборник скважинной жидкости 1983
  • Аксельрод Самуил Михайлович
  • Гаджиев Сабир Али Гейдар Оглы
  • Гамазов Олег Антонович
  • Степанян Владимир Амбарцумович
  • Черняев Александр Петрович
SU1154443A1
СПОСОБ ЭЛЕКТРОМАГНИТНОГО КАРОТАЖА 2015
  • Денисов Владимир Искандерович
  • Разумов Илья Александрович
  • Сергеев Олег Николаевич
  • Коротков Андрей Николаевич
  • Коротков Владимир Николаевич
  • Шкадин Михаил Вениаминович
RU2611204C1
ИНТЕРПРЕТАЦИЯ ШИРОКОПОЛОСНЫХ ДАННЫХ МЕТОДА СОПРОТИВЛЕНИЙ 2007
  • Мейер Уоллис Х.
  • Херрик Дейвид С.
  • Итскович Грегори Б.
RU2452982C2

Иллюстрации к изобретению RU 2 595 278 C1

Реферат патента 2016 года КОМПЛЕКСНЫЙ СКВАЖИННЫЙ ПРИБОР ДЛЯ ИССЛЕДОВАНИЯ СКВАЖИН В ПРОЦЕССЕ БУРЕНИЯ

Изобретение относится к геофизической технике и может быть использовано при проведении геофизических исследований в процессе бурения при проводке горизонтальных и наклонно направленных нефтяных и газовых скважин совместно с забойными телеметрическими системами. Данное изобретение позволяет повысить информативность, эффективность и качество измерений, в результате чего достигается технический эффект, заключающийся в улучшении эксплуатационных характеристик прибора, которые позволяют оптимизировать процесс бурения горизонтальных и наклонно направленных нефтяных и газовых скважин. Комплексный скважинный прибор в процессе бурения содержит корпус, в котором установлено не менее двух приемных и двух передающих антенных узлов, соединенных с блоком электроники, внутри корпуса прибора размещена проточная труба, на которой расположены модули блока электроники, в одном из антенных узлов под изолирующей гильзой располагается датчик силовых нагрузок, соединенный с блоком электроники, в цилиндрической полости на внешней поверхности корпуса расположен датчик давления в затрубном пространстве, соединенный с блоком электроники. 2 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 595 278 C1

1. Комплексный скважинный прибор для исследования скважин в процессе бурения, содержащий корпус, в котором установлено не менее двух приемных и двух передающих антенных узлов, соединенных с блоком электроники, каждый антенный узел содержит антенный провод, содержащий не менее чем один виток, съемную гильзу для установки на внешней поверхности корпуса прибора, в боковых сторонах съемной гильзы выполнены продольные щели, антенный провод проложен в кольцевой выемке на внутренней поверхности гильзы перпендикулярно ее щелям и соединен через гермовводы с блоком электроники, причем внутри корпуса прибора размещена проточная труба, на которой расположены модули блока электроники, внутри хотя бы как минимум одного из антенных узлов располагается датчик силовых нагрузок, соединенный с блоком электроники, в цилиндрической полости на внешней поверхности корпуса расположен датчик давления в затрубном пространстве, соединенный с блоком электроники.

2. Комплексный скважинный прибор в процессе бурения по п. 1, отличающийся тем, что датчик силовых нагрузок содержит совокупность тензорезисторов, соединенных по мостовым схемам.

3. Комплексный скважинный прибор в процессе бурения по п. 1, отличающийся тем, датчик внутритрубного давления представляет собой металлический стакан, на нижней поверхности которого размещены тензорезисторы, внутри него установлена эластичная стойкая к абразиву пробка.

Документы, цитированные в отчете о поиске Патент 2016 года RU2595278C1

ПРИБОР ЭЛЕКТРОМАГНИТНОГО КАРОТАЖА В ПРОЦЕССЕ БУРЕНИЯ 2010
  • Беляков Николай Викторович
  • Пестов Анатолий Николаевич
  • Бурсак Александр Васильевич
  • Шкадин Михаил Вениаминович
  • Яконовский Павел Александрович
RU2506611C2
ПРИБОР ЭЛЕКТРОМАГНИТНОГО КАРОТАЖА В ПРОЦЕССЕ БУРЕНИЯ 2003
  • Еремин В.Н.
  • Каюров К.Н.
RU2231091C1
УСТРОЙСТВО ДЛЯ РАЗМЕЩЕНИЯ СПУСКОВОГО ИНСТРУМЕНТА, СПОСОБ ПЕРЕДАЧИ И/ИЛИ ПРИЕМА СИГНАЛА ЧЕРЕЗ ЗЕМНУЮ ФОРМАЦИЮ И СПОСОБ ИЗМЕРЕНИЯ ХАРАКТЕРИСТИК ЗЕМНОЙ ФОРМАЦИИ С ИСПОЛЬЗОВАНИЕМ СПУСКОВОГО ИНСТРУМЕНТА 2001
  • Кларк Брайян
  • Ханка Джон
  • Фрей Марк Т.
  • Смит Дэвид Л.
  • Рамасвами Дхананджей
  • Коллинз Энтони Л.
  • Боннер Стефен Д.
RU2273868C2
НАРОДНОЕ ПРЕДПРИЯТИЕ (ЧЕХОСЛОВАКИЯ)Действительные изобретатели Олфред Колинскы и Рудольф Веселы 0
SU92908A1
US 5138263 A1, 11.08.1992
EA 201000595 A1, 30.12.2010
WO 2000047869 A1, 17.08.2000
US 20080224707 A1, 18.09.2008
US 7839149 B2, 23.11.2010
US 5530358 A, 25.06.1996.

RU 2 595 278 C1

Авторы

Денисов Владимир Искандерович

Разумов Илья Александрович

Сергеев Олег Николаевич

Макушев Владимир Ильич

Ефимова Елена Андреевна

Котенков Юрий Алексеевич

Шкадин Михаил Вениаминович

Даты

2016-08-27Публикация

2015-07-29Подача