СПОСОБ ОПТИМИЗАЦИИ ПРОЦЕССА СЖИГАНИЯ УГОЛЬНОГО ТОПЛИВА В ВИХРЕВОЙ ТОПКЕ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ Российский патент 2016 года по МПК F23B90/00 F23K1/00 F23D1/00 

Описание патента на изобретение RU2595304C1

Изобретение относится к области теплоэнергетики, а более конкретно к способу оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки, и может быть использовано в других областях промышленности, в частности, в установках по глубокой переработке угля в другие виды топлива.

Эффективность и экономичность процесса сжигания угольного топлива зависят от многих факторов и параметров, включая поддержание оптимального соотношения топливо-воздух в каждой отдельной горелке, минимизацию и уменьшение выбросов вредных для человека и окружающей среды веществ. Другим аспектом вышеуказанной проблемы является процесс подготовки угольного топлива к сжиганию и сам процесс его ввода в топочное пространство энергетической установки.

Известны способ и устройство для сжигания угля в вихревом потоке [патент RU2339874, F23B 7/100; F23K 1/00; F23C 5/24, 2007], включающий повторный возврат несгоревших частиц угольного топлива в зону взаимодействия двух вихревых потоков для оптимального их поджога.

Данный способ частично решает проблему экономичности и экологии процесса сжигания угольного топлива, но он весьма трудоемок в реализации и малоэффективен при эксплуатации ввиду необратимых потерь, которые неизбежны при высокотемпературном рециклинге инертного материала и несгоревших частиц цельного топлива.

Наиболее близким по совокупности признаков к заявляемому способу является способ сжигания угольной пыли в вихревой топке [патент RU 2418237 C2, F23K 1/09; F23C 5/24, 2009], в котором дожиг несгоревших частиц угольного топлива осуществляют при помощи ввода в процесс дополнительных горелок, использующих механоактивированный уголь микропомола, и установленных в зоне взаимодействия двух вихревых потоков, направленных в противоположные стороны относительно друг друга.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, принятого за прототип, относится то, что он, также как и ранее описанный способ, только частично решает данную проблему, а именно оптимизацию всего процесса сжигания угольного топлива в вихревой топке энергетической установки. В данном способе отсутствуют все необходимые и достаточные средства и устройства для форсированного режима работы энергетической установки, что является крайне необходимым условием при эксплуатации данного класса установок в регионах с резким изменением внешних параметров, а именно резкого падения барометрического давления, изменения направления ветра, влажности и температуры воздуха и т.п. Учесть эти многочисленные и непредсказуемые явления природы, при отсутствии соответствующих приборов, устройств и методов их регулирования режимом сжигания угольного топлива, не всегда практически реально даже при наличии режимных карт, разрабатываемых для данного региона и апробированных во время пуско-наладочных работ.

Задачей настоящего изобретения является устранение вышеперечисленных недостатков ранее известного способа оптимизации процессов сжигания угольного топлива в вихревой топке энергетической установки.

Указанная задача решается за счет достижения технического результата, заключающегося в получении более эффективного и простого способа повышения устойчивости и эффективности процесса сжигания угольного топлива в вихревой топке энергетической установки на всех режимах ее работы и с учетом всех внешних и внутренних факторов, влияющих на ее экономические и экологические параметры.

Указанный технический результат по объекту-способу достигается известным способом оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки, включающей режим запуска, стационарный режим и форсированный режим.

Отличием предложенного способа является то, что в режиме запуска первоначально используют угольное топливо микропомола с размерами частиц не более 10 мкм, получаемое известным способом, например, с помощью трехкамерного дезинтегратора, расположенного в непосредственной близости от вихревой топки, в стационарном режиме работы используют угольное топливо обычного помола, приготавливаемого, например, в двухступенчатой центробежной мельнице с помольными шарами и активатором, в форсированном режиме работы используют помимо угля микропомола и угля обычного помола дополнительно низкотемпературную плазму, генерируемую с помощью плазматрона, использующего в качестве плазмообразующего газа пары воды, при этом при сжигании угля микропомола в режиме запуска используют пылеугольные горелки из огнеупорного материала с двумя турболизаторами, установленными по обе стороны от камеры термостабилизации, а при сжигании угольного топлива обычного помола в стационарном режиме работы используют многоканальные прямоточные горелки, выполненные с четырьмя коаксиальными каналами с торцевыми тангенциальными вводами для подачи угольного топлива и воздуха.

Указанный технический результат по объекту-способу достигается также тем, что процесс сжигания угольного топлива осуществляют при постоянном контроле химического состава и концентрации образующегося горючего газа путем изменения тангенциальной и аксиальной составляющих скоростей вихревого потока, путем частичного отключения или включения вспомогательных и основных горелок, а также путем снижения потока низкотемпературной плазмы, генерируемой с помощью плазматрона, использующего в качестве плазмообразующего газа пары воды.

Указанный технический результат по объекту-способу достигается также тем, что низкотемпературную плазму, генерируемую с помощью плазматрона, использующего в качестве плазмообразующего газа пары воды, вводят в топку энергетической установки для повышения устойчивости и эффективности процесса сжигания, а именно повышения или снижения давления и температуры в зависимости от расхода воздуха и угольного топлива и его теплотворной способности.

Указанный технический результат по объекту-способу достигается также тем, что при стационарном режиме работы вихревой топки энергетической установки для более полного использования энтальпии отходящих газов осуществляют одновременно рекуперацию выходящего потока газа и его очистку с помощью известного устройства для утилизации тепла конденсации водяного пара и очистки уходящих газов энергетической установки, в корпусе которого вдоль по току отходящего газа установлены сухой циклон и мокрая ступень центробежно-барботажного аппарата, а горячую воду и пар, полученные в результате рекуперации, используют в процессе подготовки угольного топлива к сжиганию.

Указанный технический результат по объекту-способу достигается также тем, что перед окончательным выбросом отходящих газов в атмосферу их еще раз дополнительно очищают способом мокрой очистки, очистные устройства которого располагают непосредственно на входе отходящего потока газов в дымовую трубу.

Сведения, подтверждающие возможность осуществления заявляемого изобретения с получением указанного технического результата, состоят в следующем. Заявленный способ оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки в большей степени предназначен для нужд большой и малой энергетики, но это не исключает его использования в других отраслях промышленности, например, при глубокой переработке угля в другие полезные продукты. В большей своей части он базируется на уже известных изобретениях авторов, но существенно отличается от них как по новизне, так и по глубине. К тому же он объединяет ранее запатентованные решения в один комплекс и показывает новый способ их оптимального использования с получением максимального экологического эффекта. Так, например, предлагаемый способ предусматривает четкое разделение режимов работы энергетической установки и, соответственно, использование того или иного оборудования и средств контроля и регулирования. Так, в режиме запуска, который длится весьма короткое время, целесообразно использовать уголь микропомола с наименьшей тониной, которую можно получить на сегодняшний день [патент RU 2511314 C2, В02С 13/22, 2012]. Однако вряд ли это будет экономически оправдано, если его применять в стационарном режиме работы энергетической установки в качестве основного вида топлива, так как затраты на его получение сведут на нет все его преимущества перед другими видами используемого топлива. Поэтому в данном режиме работы энергетической установки, т.е. в стационарном, целесообразно в качестве основного вида топлива использовать уголь обычного помола, который можно подготавливать к сжиганию по более дешевой и простой технологии, например, как это предложено авторами ранее [патент RU 2273521 C2, В02С 19/18, 2004]. При этом, как показывают эксперименты, с применением угля микропомола процесс перехода на стационарный режим осуществляется существенно быстрее и менее затратно. Следует особо отметить, что переходные режимы как раз и являются весьма затратными и более трудоемкими как при контроле их, так и при регулировании. Поэтому при форсированном-переходном режиме работы энергетической установки целесообразно использовать все имеющиеся средства и оборудование, установленное на данной энергетической установке, включая и низкотемпературную плазму, генерируемую с помощью небольших плазматронов, использующих в качестве плазмообразующего газа пары воды. Такой подход не только улучшает процесс сжигания угольного топлива, но и делает более рентабельным и экономически оправданным сжигание угольного топлива с малой теплотворной способностью, большой гигроскопичностью и высокой зольностью. При этом для сжигания угля микропомола более целесообразно использовать специальные горелки [патент RU 2294486 C1, F23D 1/00, 2005] ввиду того, что уголь микропомола по своим энергетическим и эксплуатационным свойствам более схож с газом, чем с твердым угольным топливом. В то время, как при сжигании угольного топлива обычного помола целесообразно использовать горелки с коаксиальными каналами и тангенциальными вводами угольного топлива и воздуха [патент RU 2460941 C1, F23D 1/02, F23Q 9/00, F23C 99/09, 2011]. Такая комбинация средств и оборудования будет экономически оправдана, если на каждом этапе их использования будет отслеживаться в непрерывном режиме вся текущая ситуация, включая контроль химического состава образующегося горючего газа, температуры и давления как в самой вихревой топке энергетической установки, так и в устройствах, его поддерживающих. Такой комплексный контроль практически неосуществим без использования компьютера и специального программного обеспечения [патент RU 2287741 C2, F23N 5/00, 2004]. Никакая режимная карта не в состоянии предсказать все нюансы происходящих процессов, на каких бы теоретических и экспериментальных данных она не базировалась. Только объективный и непрерывный мониторинг всего процесса в целом позволяет своевременно и оперативно реагировать на все его изменения, происходящие под действием внешней среды и других непредвиденных обстоятельств, включая и «человеческий» фактор. К тому же информация, записанная в память компьютера во время испытания данной установки или ее головного образца, позволяет выбрать наиболее оптимальный режим ее работы на всех этапах эксплуатации, включая и «форс-мажорные» обстоятельства. Следует особо подчеркнуть, что только с применением компьютера и специальных газоанализаторов стало возможно в качестве регулирующих процесс сжигания угольного топлива использовать такие устройства, как плазматроны и дезинтеграторы. Эти устройства, как правило, не являются основными и носят вспомогательный характер использования, но без их применения сам процесс сжигания угольного топлива менее управляем и более трудоемок. Низкотемпературная плазма и созданные на ее основе реакторы сегодня изучены довольно обстоятельно [Б.И. Михайлов. «Электродуговые плазмохимические реакторы раздельного, совмещенного и раздельно-совмещенного типов», Теплофизика, 2010 г., т. 17, №3, стр. 425-440], но нигде и ни в каких ранее известных разработках она не выступала в роли регулятора в столь сложном и наукоемком процессе. Такую новую роль она смогла приобрести лишь после ряда исследовательских работ самих авторов [патент RU 2536718, В04С 5/09, F23C 5/24, 2013], в которых исследовались ее основные преимущества, а именно практически безинерционный способ нагрева любой газообразной смеси, включая водяной пар. Только водяной пар, разлагаясь мгновенно под действием низкотемпературной плазмы на водород и кислород, способен существенно изменять энергетические параметры процесса сжигания угольного топлива в вихревой топке, и тем самым улучшать одновременно его экономические и экологические характеристики. Вопросы экологии не только целесообразны с экономической точки зрения, но и совершенно необходимы с точки зрения «выживания», так как экологическая ситуация на нашей планете с каждым годом катастрофически приближается к своему пределу, после которого дальнейшее загрязнение планеты просто недопустимо и весьма опасно. В предлагаемом способе оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки вопросам экологии уделяется первостепенное внимание, поэтому отходящие газы предлагается не только очищать, но и одновременно рекуперировать, например, с помощью устройства для утилизации тепла конденсации водяного пара [патент RU 2484402 C1, F28C 3/06, 2011]. Используя по максимуму энтальпию отходящего газа, можно существенно повысить рентабельность процесса сжигания угольного топлива, а очистив отходящий газ от твердых вредных примесей при помощи сухого циклона, можно исключить его вредное влияние на окружающую среду, тем самым еще больше повысив рентабельность процесса. К тому же, «отобранное бросовое» тепло также можно вернуть снова в процесс, например использовать для нагрева угольного топлива или устройств подготовки угольного топлива к сжиганию. И конечно, перед выбросом отходящего потока газа в атмосферу его необходимо также очистить от вредных газов и всевозможных аэрозолей, включая кислоты, щелочи и основания. С этой целью перед дымовой трубой целесообразно расположить еще одну дополнительную ступень очистки, например, блок центробежно-барботажных устройств с различными абсорбентами [патент RU 2236890 C1, B01D 47/00, 2003], после прохождения которого отходящий поток газа уже не будет «травить» дымовую трубу и портить окружающую атмосферу. К тому же, получаемые в процессе окончательной очистки шламы и отработанные сорбенты могут быть в дальнейшем использованы в промышленности.

В заключение следует отметить, что только такой целенаправленный и комплексный подход с использованием компьютера со специальным программным обеспечением и газоанализаторами позволяет гарантировать полное сжигание угольного топлива в вихревой топке энергетической установки и, тем самым, полнее и экономичнее использовать его теплотворную способность без нанесения вреда окружающей среде. Предлагаемый способ позволяет вести процесс сжигания угольного топлива в вихревой топке энергетической установки как вручную с помощью технологических карт и оператора, так и в автоматическом режиме с использованием компьютера с газоанализатором и специальным программным обеспечением, обеспечивая при этом соответствующую безопасность. После включения компьютера процесс запуска того или иного оборудования осуществляется либо автоматически, либо с учетом его информации с помощью оператора. При этом переход с одного режима работы на другой, как и форсированный режим, осуществляется автоматически от сопоставления измеряемых параметров с теми оптимальными их значениями, которые были получены во время пуско-наладочных работ или при исследовании головного образца данной серии энергетических установок.

Технический эффект от использования предложенного изобретения состоит в следующем. Предложенный способ оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки существенно упрощает ее эксплуатацию, а также улучшает как экономические показатели, так и экологические параметры. Автоматизация данного процесса сжигания может быть частичной или полной в зависимости от наличия имеющихся материальных ресурсов и экологической ситуации в регионе, где предполагается эксплуатация данной установки. Конечно, в мегаполисах она должна быть укомплектована по максимуму, в то время как при использовании ее на разрезах для переработки угля в другие виды продуктов, какая-то часть оборудования может быть исключена или замещена.

Похожие патенты RU2595304C1

название год авторы номер документа
СПОСОБ СЖИГАНИЯ УГЛЯ, ПОДВЕРГНУТОГО МЕХАНИЧЕСКОЙ И ПЛАЗМЕННОЙ ОБРАБОТКЕ 2016
  • Алексеенко Сергей Владимирович
  • Бурдуков Анатолий Петрович
  • Попов Виталий Исакович
  • Шторк Сергей Иванович
  • Попов Юрий Степанович
  • Бутаков Евгений Борисович
RU2631959C1
СПОСОБ ФАКЕЛЬНОГО СЖИГАНИЯ НИЗКОСОРТНЫХ УГЛЕЙ В КОТЕЛЬНЫХ УСТАНОВКАХ 2017
  • Бурдуков Анатолий Петрович
  • Попов Виталий Исакович
  • Кузнецов Артём Валерьевич
  • Бутаков Евгений Борисович
  • Яганов Егор Николаевич
RU2658450C1
ДВУХСТУПЕНЧАТАЯ ВИХРЕВАЯ ГОРЕЛКА 2016
  • Алексеенко Сергей Владимирович
  • Бурдуков Анатолий Петрович
  • Бутаков Евгений Борисович
  • Попов Юрий Степанович
  • Шторк Сергей Иванович
  • Юсупов Роман Равильевич
RU2635178C1
СПОСОБ СЖИГАНИЯ УГЛЯ МИКРОПОМОЛА И УГЛЯ ОБЫЧНОГО ПОМОЛА В ПЫЛЕУГОЛЬНОЙ ГОРЕЛКЕ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2011
  • Алексеенко Сергей Владимирович
  • Бурдуков Анатолий Петрович
  • Попов Виталий Исакович
  • Попов Юрий Степанович
  • Шторк Сергей Иванович
RU2460941C1
СПОСОБ ПОВЫШЕНИЯ УСТОЙЧИВОСТИ И ЭФФЕКТИВНОСТИ ПРОЦЕССА СЖИГАНИЯ ТОПЛИВА В ВИХРЕВОЙ ТОПКЕ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ 2013
  • Алексеенко Сергей Владимирович
  • Шторк Сергей Иванович
  • Попов Юрий Степанович
RU2536718C2
СПОСОБ БЕЗМАЗУТНОЙ РАСТОПКИ ПАРОВЫХ И ВОДОГРЕЙНЫХ КОТЛОВ 2021
  • Жуйков Андрей Владимирович
  • Матюшенко Анатолий Иванович
RU2762202C1
СПОСОБ СЖИГАНИЯ УГОЛЬНОЙ ПЫЛИ В ВИХРЕВОЙ ТОПКЕ 2009
  • Бурдуков Анатолий Петрович
  • Бурдуков Павел Анатольевич
  • Попов Виталий Исакович
  • Попов Юрий Степанович
RU2418237C2
Тепловой агрегат для совместного получения цементного клинкера, сернистого газа, тепловой и электроэнергии 2018
  • Арпишкин Игорь Михайлович
  • Нигматуллин Виль Ришатович
  • Кулабухов Вадим Александрович
  • Фежделюк Дмитрий Сергеевич
RU2690553C1
СПОСОБ МЕХАНОАКТИВАЦИИ УГЛЯ МИКРОПОМОЛА ПЕРЕД СЖИГАНИЕМ 2009
  • Бурдуков Анатолий Петрович
  • Попов Виталий Исакович
  • Попов Юрий Степанович
RU2419033C2
СПОСОБ И УСТРОЙСТВО ДЛЯ УЛЬТРАТОНКОГО ПОМОЛА УГЛЯ 2004
  • Алексеенко Сергей Владимирович
  • Бурдуков Анатолий Петрович
  • Попов Виталий Исакович
  • Попов Юрий Степанович
RU2273521C2

Реферат патента 2016 года СПОСОБ ОПТИМИЗАЦИИ ПРОЦЕССА СЖИГАНИЯ УГОЛЬНОГО ТОПЛИВА В ВИХРЕВОЙ ТОПКЕ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ

Изобретение относится к теплоэнергетике, а более конкретно к способу оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки. Способ включает использование в режиме запуска энергетической установки угля микропомола с размерами частиц не более 10 мкм, получаемого в трехкамерном дезинтеграторе, в стационарном режиме - угля обычного помола, получаемого в двухступенчатой мельнице с помольными шарами и активатором. При этом в форсированном-переходном режиме работы установки предлагается помимо угля микропомола и угля обычного помола использовать дополнительно низкотемпературную плазму, генерируемую с помощью плазматрона, использующего в качестве плазмообразующего газа пары воды, а контроль и регулировку осуществлять за счет непрерывного мониторинга процесса с помощью компьютера с газоанализатором и специальным программным обеспечением. Изобретение позволяет существенно улучшить экономические и экологические параметры процесса сжигания угольного топлива с максимально возможным оптимальным использованием его теплотворной способности на всех режимах работы энергетической установки и вне зависимости от условий окружающей среды. 4 з.п. ф-лы.

Формула изобретения RU 2 595 304 C1

1. Способ оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки, включающий режим запуска, стационарный режим и форсированный режим, отличающийся тем, что в режиме запуска первоначально используют угольное топливо микропомола с размерами частиц не более 10 мкм, получаемое с помощью трехкамерного дезинтегратора, расположенного в непосредственной близости от вихревой топки, в стационарном режиме работы используют угольное топливо обычного помола, получаемое в двухступенчатой центробежной мельнице с помольными шарами и активатором, в форсированном режиме работы используют помимо угля микропомола и угля обычного помола дополнительно низкотемпературную плазму, генерируемую с помощью плазматрона, использующего в качестве плазмообразующего газа пары воды, при этом при сжигании угольного топлива микропомола в режиме запуска используют пылеугольные горелки из огнеупорного материала с двумя турболизаторами, установленными по обе стороны от камеры термостабилизации, а при сжигании угольного топлива обычного помола в стационарном режиме работы используют многоканальные прямоточные горелки, выполненные с четырьмя коаксиальными каналами с торцевыми тангенциальными вводами для подачи угольного топлива и воздуха.

2. Способ оптимизации процесса сжигания угольного топлива по п. 1, отличающийся тем, что процесс сжигания угольного топлива осуществляют при постоянном контроле химического состава и концентрации образующегося горючего газа с помощью газоанализатора и регулировании на основе данных контроля путем изменения тангенциальной и аксиальной составляющих скоростей вихревого потока, частичного отключения или включения основных и вспомогательных горелок, а также снижения потока низкотемпературной плазмы, генерируемой с помощью плазматрона, использующего в качестве плазмообразующего газа пары воды.

3. Способ оптимизации процесса сжигания угольного топлива по п. 1, отличающийся тем, что низкотемпературную плазму, генерируемую с помощью плазматрона, использующего в качестве плазмообразующего газа пары воды, вводят в топку энергетической установки в зависимости от расхода воздуха и угольного топлива и его теплотворной способности.

4. Способ оптимизации процесса сжигания угольного топлива по п. 1, отличающийся тем, что при стационарном режиме работы вихревой топки энергетической установки осуществляют одновременно рекуперацию выходящего потока газа и его очистку с помощью устройства для утилизации тепла конденсации водяного пара и очистки уходящих газов энергетической установки, в корпусе которого вдоль по потоку отходящего газа установлены сухой циклон и мокрая ступень центробежно-барботажного аппарата, а горячую воду и пар, полученные в результате рекуперации, используют в процессе подготовки угольного топлива к сжиганию.

5. Способ оптимизации процесса сжигания угольного топлива по п. 1, отличающийся тем, что перед выбросом отходящих газов в атмосферу их дополнительно очищают способом мокрой очистки в очистных устройствах, расположенных непосредственно на входе отходящего потока газов в дымовую трубу.

Документы, цитированные в отчете о поиске Патент 2016 года RU2595304C1

СПОСОБ СЖИГАНИЯ УГОЛЬНОЙ ПЫЛИ В ВИХРЕВОЙ ТОПКЕ 2009
  • Бурдуков Анатолий Петрович
  • Бурдуков Павел Анатольевич
  • Попов Виталий Исакович
  • Попов Юрий Степанович
RU2418237C2
СПОСОБ СЖИГАНИЯ УГЛЯ 2002
  • Бурдуков А.П.
  • Бурдуков П.А.
  • Петин Ю.М.
RU2230981C2
ДЕЗИНТЕГРАТОР ДЛЯ ПОМОЛА УГЛЯ 2012
  • Бурдуков Анатолий Петрович
  • Попов Виталий Исакович
  • Логвиненко Степан Иванович
  • Маторин Леонид Вячеславович
  • Попов Юрий Степанович
  • Бирюля Игорь Петрович
RU2511314C2
СПОСОБ И УСТРОЙСТВО ДЛЯ УЛЬТРАТОНКОГО ПОМОЛА УГЛЯ 2004
  • Алексеенко Сергей Владимирович
  • Бурдуков Анатолий Петрович
  • Попов Виталий Исакович
  • Попов Юрий Степанович
RU2273521C2
ПЫЛЕУГОЛЬНАЯ ГОРЕЛКА 2005
  • Алексеенко Сергей Владимирович
  • Бурдуков Анатолий Петрович
  • Попов Юрий Степанович
  • Попов Виталий Исакович
RU2294486C1
СПОСОБ СЖИГАНИЯ УГЛЯ МИКРОПОМОЛА И УГЛЯ ОБЫЧНОГО ПОМОЛА В ПЫЛЕУГОЛЬНОЙ ГОРЕЛКЕ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2011
  • Алексеенко Сергей Владимирович
  • Бурдуков Анатолий Петрович
  • Попов Виталий Исакович
  • Попов Юрий Степанович
  • Шторк Сергей Иванович
RU2460941C1
СПОСОБ ПОВЫШЕНИЯ УСТОЙЧИВОСТИ И ЭФФЕКТИВНОСТИ ПРОЦЕССА СЖИГАНИЯ ТОПЛИВА В ВИХРЕВОЙ ТОПКЕ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ 2013
  • Алексеенко Сергей Владимирович
  • Шторк Сергей Иванович
  • Попов Юрий Степанович
RU2536718C2
СПОСОБ ПЛАЗМЕННОГО ВОСПЛАМЕНЕНИЯ ПЫЛЕУГОЛЬНОГО ТОПЛИВА (ВАРИАНТЫ) И ПЛАЗМЕННАЯ ПЫЛЕУГОЛЬНАЯ ГОРЕЛКА (ВАРИАНТЫ) 2001
  • Карпенко Е.И.
  • Мессерле Владимир Ефремович
  • Перегудов В.С.
RU2210032C2

RU 2 595 304 C1

Авторы

Алексеенко Сергей Владимирович

Бондарчук Елена Николаевна

Бурдуков Анатолий Петрович

Исупов Игорь Владимирович

Попов Виталий Исакович

Попов Юрий Степанович

Шторк Сергей Иванович

Даты

2016-08-27Публикация

2015-04-20Подача