Изобретение относится к области радиографии, в частности к способам регистрации радиографических изображений, сформированных с помощью протонного излучения, и может быть использовано, например, в системах цифровой съемки для определения внутренней структуры плотных объектов.
Радиография предполагает наличие источника излучения, проходящего через исследуемый объект и изменяющего свою интенсивность в зависимости от пространственного распределения массовой толщины, а также приемника, который регистрирует сформированное излучением радиографическое изображение.
Регистрацию радиографических изображений, сформированных с помощью ионизирующих излучений, в частности рентгеновского излучения, осуществляют, используя сцинтилляционные конвертеры, например, на основе CsI (патент RU 2472138, публик. 10.01.2013), преобразующие ионизирующее излучение в оптическое, которое через поворотное зеркало, объектив и электронно-оптический затвор регистрируют на фоточувствительную пленку либо на матричный полупроводниковый сенсор.
Схему со сцинтилляционным конвертером можно использовать для регистрации изображений, сформированных с помощью пучка протонов. Известен метод протонной радиографии, заключающийся в просвечивании исследуемого образца пучком протонов, ускоряемых в синхротроне, регистрации протонных изображений с помощью многокадровой электронно-оптической системы, основанной на использовании сцинтилляционных конвертеров, обработке в ЭВМ полученной информации с последующим восстановлением трехмерной геометрии образца с помощью методов малоракурсной томографии (патент RU 2426100, публик. 10.08.2011).
Недостатком применения сцинтилляционных конвертеров является наличие множества стадий преобразования энергии исходного излучения: в сцинтилляторе энергия ионизирующего излучения преобразуется в оптический диапазон, далее на фотокатоде затвора оптическое изображение преобразуется в электронное, далее на люминофоре затвора электронное опять преобразуется в оптическое, далее следует его поглощение в материале полупроводникового сенсора с образованием электронно-дырочных пар, далее происходит считывание заряда с сенсора через аналого-цифровой преобразователь. На каждом этапе преобразования происходит потеря информации, содержащейся в исходном радиографическом изображении. Помимо этого происходит размытие оптического изображения на сцинтилляторе, поворотном зеркале и объективе, а также размытие электронного изображения внутри электронно-оптического затвора.
Регистрацию радиографических, в частности рентгеновских, изображений можно осуществить непосредственно на рентгеночувствительную пленку - триацетатную пленку с чувствительным слоем на основе йодистых и бромистых солей серебра (патент RU 2188446, публик. 27.08.2002), либо на рентгеночувствительную пленку в сочетании с усиливающими люминофорными экранами (патент RU 2290664, публик. 27.12.2006). При регистрации радиографических изображений на рентгеночувствительную пленку, находящуюся непосредственно в поле проникающего излучения, не происходит многочисленного преобразования энергии, также пленка не вносит геометрические искажения в регистрируемое изображение. Однако рентгеночувствительная пленка имеет узкий динамический диапазон (~ 102), который определяется как соотношение максимального значения регистрируемого сигнала к его минимальному значению, что не позволяет использовать ее для регистрации протонных изображений. Ионизирующая способность высокоэнергетичного протона (10-100 ГэВ) более чем на три порядка превышает ионизирующую способность жесткого гамма-кванта (1-10 МэВ), и при таком виде облучения пленка сразу переходит в режим насыщения.
Для регистрации рентгеновских изображений в последнее время стали использовать запоминающие люминесцентные экраны, выполненные в виде пластин с чувствительным слоем на основе галогенов (заявка TW 201442515, публик. 01.11.2014). В международной литературе такие экраны именуются «storage phosphors» или обозначаются как «IP» (image plate). Под воздействием ионизирующего излучения в чувствительном слое экранов атомы переходят в метастабильное состояние, и в нем формируется скрытое изображение. Изображение с экрана сканируется лазерным излучением в специальном устройстве - дигитайзере [В мире неразрушающего контроля 4 (62) март 2013, стр. 65-70.].
В патенте RU 2393463, публик. 27.06.2010, в качестве запоминающего экрана используют фосфорную пластину и проводят на нее просвечивание объекта при сниженном на 10-30% от применяемого при просвечивании на радиографическую пленку напряжении на рентгеновской трубке, обеспечивающем для пластины не большее, чем для пленки, значение экспозиции просвечивания, оценивают по полученному с фосфорной запоминающей пластины компьютерному изображению достигнутую чувствительность контроля и при получении на изображении с фосфорной запоминающей пластины не менее высокой (не большей в мм), чем на радиографической пленке, чувствительности контроля, фиксируют примененное значение напряжения на рентгеновской трубке (значение энергии излучения), и дальнейшее просвечивание контролируемого объекта проводят на фосфорную запоминающую пластину при указанном фиксированном напряжении на рентгеновской трубке (значении энергии излучения) при соответствующем контроле по эталонам достигаемой чувствительности радиографического контроля. Технический результат: обеспечение за счет использования фосфорных запоминающих пластин пониженного, в сравнении с просвечиванием на радиографическую пленку, напряжения на рентгеновской трубке при сохранении чувствительности контроля на уровне чувствительности контроля, достигаемого на радиографической пленке, а также исключение процесса фотообработки снимков, обеспечение возможности многократного использования фосфорных запоминающих пластин и автоматизации процесса расшифровки радиограмм посредством компьютерной обработки. Данный способ является наиболее близким аналогом заявляемого изобретения.
Основным достоинством рентгенографии является распространенность и доступность источников гамма-излучения, основным недостатком - невысокая просвечивающая способность.
Техническим результатом предлагаемого изобретения является высокая просвечивающая способность при высоком пределе разрешения.
Технический результат достигается за счет того, что в способе регистрации радиографических изображений, сформированных с помощью ионизирующего излучения, включающем пропуск ионизирующего излучения сначала через исследуемый объект, а затем через люминесцентный экран, с которого в последствии считывают изображение, новым является то, что в качестве ионизирующего излучения используют пучок протонов, ускорение которых осуществляют до энергии не менее 10 ГэВ, а в качестве запоминающего люминесцентного экрана используют пластину с чувствительным слоем на основе флюорогалогенидов бария, активированную редкоземельными добавками.
Применение в качестве ионизирующего излучения пучка протонов, ускорение которых осуществляют до энергии не менее 10 ГэВ, позволяет обеспечить высокую просвечивающую способность. Так, например, длина свободного пробега протона с энергией 24 ГэВ в меди равна 13,9 см, а длина свободного пробега в меди фотона с энергией 10 МэВ равна 3,6 см.
Использование в качестве запоминающего люминесцентного экрана пластины с чувствительным слоем на основе флюорогалогенидов бария, активированных европием, позволяет исключить геометрические искажения в регистрируемом изображении и устранить потери исходной информации при преобразованиях энергии.
В качестве примера конкретной реализации, позволяющего осуществить предлагаемый способ, может служить устройство, которое выполнено на основе действующего синхрофазотрона У-70, построенного в г. Протвино [Новости и проблемы фундаментальной физики, №1(5), 2009 г., с. 32-42], и включает камеру ВЗК, систему регистрации и исследуемые опытные образцы. Система регистрации выполнена на основе запоминающего экрана в виде пластины с чувствительным слоем на основе флюорогалогенидов бария, активированных европием.
Заявляемый способ осуществляется следующим образом.
Под воздействием ионизирующего излучения в чувствительном слое экранов атомы переходят в метастабильное состояние, и в нем формируется скрытое изображение, которое в дальнейшем за счет эффекта фотостимулированной люминесценции сканируется лазерным излучением в дигитайзере. После считывания экран вновь готов к работе. Предел разрешения экранов определяется дискретностью считывания дигитайзера, которая на сегодняшний день достигает 25 мкм [В мире неразрушающего контроля 4 (62) март 2013, стр. 65-70.]. Также же, как и рентгенопленка, запоминающие экраны, не вносят в регистрируемое изображение геометрические искажения, но при этом обеспечивают широкий динамический диапазон (~104 и более), недостижимый для других систем, что позволяет их использовать как средство регистрации радиографических изображений, сформированных высокоэнергичным протонным пучком.
К положительным сторонам этого метода относится высокая просвечивающая способность, высокий предел разрешения, отсутствие потерь исходной информации при преобразованиях энергии, отсутствие геометрических искажений.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РАДИОГРАФИЧЕСКОГО КОНТРОЛЯ С ПРИМЕНЕНИЕМ ФОСФОРНЫХ ЗАПОМИНАЮЩИХ ПЛАСТИН | 2009 |
|
RU2393463C1 |
СПОСОБ РАДИОГРАФИИ ОБЪЕКТОВ | 2005 |
|
RU2290627C1 |
СПОСОБ ПОЛУЧЕНИЯ ПРОТОННЫХ ИЗОБРАЖЕНИЙ | 2016 |
|
RU2617722C1 |
УСТРОЙСТВО ДЛЯ РАДИОГРАФИИ И ТОМОГРАФИИ | 2005 |
|
RU2293971C2 |
СПОСОБ МНОГОКАДРОВОЙ РЕГИСТРАЦИИ РАДИОГРАФИЧЕСКИХ ИЗОБРАЖЕНИЙ (ВАРИАНТЫ) | 2020 |
|
RU2729977C1 |
СПОСОБ РАДИОГРАФИРОВАНИЯ ПЕРЕМЕННО-ТОЛЩИННЫХ ОБЪЕКТОВ | 1992 |
|
RU2092820C1 |
ЛАЗЕРНЫЙ ЦЕНТРАТОР ДЛЯ РЕНТГЕНОВСКОГО ИЗЛУЧАТЕЛЯ | 2010 |
|
RU2417566C1 |
СПОСОБ НАСТРОЙКИ МАГНИТООПТИЧЕСКОЙ СИСТЕМЫ ПРОТОНОГРАФИЧЕСКОГО КОМПЛЕКСА (ВАРИАНТЫ) | 2019 |
|
RU2727326C1 |
СПОСОБ ИССЛЕДОВАНИЯ МАТЕРИАЛОВ ПРИ УДАРНО-ВОЛНОВОМ НАГРУЖЕНИИ С ПОМОЩЬЮ ПРОТОНОГРАФИИ | 2010 |
|
RU2426100C1 |
СПОСОБ НЕЙТРОННОЙ РАДИОГРАФИИ С ИСПОЛЬЗОВАНИЕМ БЫСТРЫХ НЕЙТРОНОВ, ЭКРАН ДЛЯ НЕЙТРОННОЙ РАДИОГРАФИИ, ЭКРАН ДЛЯ НЕЙТРОННОЙ И РЕНТГЕНОВСКОЙ РАДИОГРАФИИ | 2001 |
|
RU2207550C2 |
Изобретение используется для регистрации радиографических изображений, сформированных с помощью ионизирующего излучения, относится к области радиографии, в частности к способам регистрации оптических изображений, сформированных с помощью протонного излучения, и может быть использовано, например, в системах цифровой съемки для определения внутренней структуры плотных объектов или исследования быстропротекающих процессов. Сущность изобретения заключается в том, что сначала ионизирующее излучение пропускают через исследуемый объект, а затем через запоминающий люминесцентный экран, с которого в последствии считывают изображение, при этом в качестве ионизирующего излучения используют пучок протонов, ускорение которых осуществляют до энергии не менее 10 ГэВ, а в качестве запоминающего люминесцентного экрана используют пластину с чувствительным слоем на основе флюорогалогенидов бария, активированных европием. Технический результат - обеспечение высокой просвечивающей способности при высоком пределе разрешения, отсутствие потерь исходной информации при преобразованиях энергии, отсутствие геометрических искажений.
Способ регистрации радиографических изображений, сформированных с помощью ионизирующего излучения, заключающийся в том, что ионизирующее излучение пропускают сначала через исследуемый объект, а затем через запоминающий люминесцентный экран, с которого в последствии считывают изображение, отличающийся тем, что в качестве ионизирующего излучения используют пучок протонов, ускорение которых осуществляют до энергии не менее 10 ГэВ, а в качестве запоминающего люминесцентного экрана используют пластину с чувствительным слоем на основе флюорогалогенидов бария, активированных европием.
СПОСОБ РАДИОГРАФИЧЕСКОГО КОНТРОЛЯ С ПРИМЕНЕНИЕМ ФОСФОРНЫХ ЗАПОМИНАЮЩИХ ПЛАСТИН | 2009 |
|
RU2393463C1 |
СПОСОБ НЕЙТРОННОЙ РАДИОГРАФИИ С ИСПОЛЬЗОВАНИЕМ БЫСТРЫХ НЕЙТРОНОВ, ЭКРАН ДЛЯ НЕЙТРОННОЙ РАДИОГРАФИИ, ЭКРАН ДЛЯ НЕЙТРОННОЙ И РЕНТГЕНОВСКОЙ РАДИОГРАФИИ | 2001 |
|
RU2207550C2 |
МАТЕРИАЛЫ И УСТРОЙСТВА, СОДЕРЖАЩИЕ ЛЮМИНОФОРЫ | 1994 |
|
RU2124035C1 |
РЕНТГЕНОВСКАЯ УСТАНОВКА ДЛЯ ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЯ ИССЛЕДУЕМОГО ОБЪЕКТА И ЕЕ ПРИМЕНЕНИЕ | 2006 |
|
RU2449729C2 |
US 5524132A, 04.06.1996 | |||
JP 2001051099A, 23.02.2001. |
Авторы
Даты
2016-09-10—Публикация
2015-06-22—Подача