СПОСОБ ПОЛУЧЕНИЯ МИКРОДИСПЕРСНЫХ СИСТЕМ Российский патент 2016 года по МПК C02F1/20 B01D19/00 

Описание патента на изобретение RU2597318C2

Изобретение относится к области термодинамики многофазных систем.

Известен способ выделения сероводорода из природных вод путем дегазации. С целью упрощения процесса при извлечении сероводорода из глубинных слоев естественных водоемов, дегазацию ведут путем воздействия на воду электрогидравлическими ударами (Авт. св. СССР №429026, МПК C02F 1/34, опубл. 25.05.1974).

Недостатком этого способа является потребность использования высокого напряжения от 5 до 100 кВ с одновременным наложением разряжения порядка 0,4 атмосферы. При этом должен быть исключен контакт воды и получаемых из нее продуктов (газов) с кислородом воздуха.

Также известен способ, заключающийся в ее термической обработке путем нагрева в объемных аппаратах до температуры кипения (Авт. св. СССР №426970, МПК C021F 1/02, опубл. 05.05.1974).

Недостатком этого способа является то, что вода подвергается термической обработке, что требует привлечения дополнительных энергоресурсов.

Известен способ дегазации жидкости путем десорбции газов под действием разности их парциальных давлений и увеличения поверхности раздела фаз кавитационным механическим воздействием на жидкость, при этом десорбцию осуществляют в объеме жидкости, имеющей естественную свободную поверхность, а кавитационному механическому воздействию подвергают только слой жидкости в пределах этой поверхности (Патент РФ №2079435, МПК C02F 1/34, опубл. 20.05.1997).

Недостатком перечисленных выше способов является то, что они потребляют дополнительные энергоресурсы. А также отсутствуют: инициирующий механизм образования зародышей СаСО3; учет площади поверхности раздела фаз, основным образующим фактором которого является пузырьковая система; отсутствует анализ массообменных процессов, описываемых законом Генри.

Техническим результатом изобретения является повышение эффективности извлечения из жидкости растворенного в ней газа, т.е. дегазация жидкости, и, в частности, воды.

Технический результат достигается тем, что в способе получения микродисперсных систем при прохождении водного потока через мембрану растворенные в воде газы в соответствии с законом Генри выделяются из раствора при прохождении через отверстия в перегородке в виде пузырьков размером от 5 мкм и более, а определяемая средняя величина электрического потенциала в потоке составляет - 98,8 мВ, диаметр отверстий в перегородке определяется величиной частиц механических примесей, содержащихся в воде, до 300 мкм и составляет 400 мкм.

Так как величина заряда пузырьков не определяет суть заявки, поэтому данная величина не приводится в формуле заявки.

Изобретение поясняется чертежами, где на фиг. 1 представлена схема экспериментальной установки, на фиг. 2 - зависимость количества воздушных пузырьков в 1 мл микропузырьковой жидкости от их диаметра.

Заявляемый способ реализуется в вертикальном или горизонтальном аппарате (фиг. 1), в котором перегородка-мембрана 1 имеет живое сечение от 5% и выше в зависимости от физико-химических свойств жидкой фазы, а диаметр отверстий начинается с 400 мкм и более с учетом наличия частичек твердой фазы, во избежание засорения перегородки-мембраны в процессе эксплуатации.

В поперечном сечении материального потока (фиг. 1) устанавливают перегородку-мембрану (1) с размером отверстий 400 мкм в корпус установки 2 с целью исключения засорения данных отверстий. Давление в системе обуславливается величиной рабочего давления сети (Р1). После прохождения диафрагмы материальный поток поступал в открытую систему под атмосферным давлением (Р2). Объемная скорость потока обуславливалась разницей (P1) и (Р2), а также сопротивлением перегородки-мембраны.

При этом происходит дегазация раствора жидкой фазы в соответствии с законом Генри, то есть растворенный в жидкой фазе газ, накопленный за десятки и сотни лет, высвобождается в окружающую среду. Из воды выделяются микропузырьки 3.

По ходу эксперимента регистрировались следующие показатели:

1. Размер выделяемых пузырьков из раствора при прохождении через отверстия в перегородке.

2. Знак заряда пузырьков.

3. Разность потенциала между корпусом установки и водным потоком.

4. Диаметр отверстий в перегородке с целью исключения засорения данных отверстий механическими примесями.

5. Объемная скорость потока в зависимости от давления водопроводной сети.

6. Скорость образования кристаллов солей временной жесткости в прошедшем через перегородку-мембрану растворе.

7. Количество микропузырьков на единичный объем жидкой фазы.

8. Материал перегородки-мембраны.

9. Химический состав газовой фазы, выделенной из воды, при получении микродисперсных систем.

Электрический потенциал Е в потоке измерялся вольтметром В7-22А.

Напряженность электростатического поля измерялась измерителем напряженности электростатического поля ИЭСП-7.

Е (Э.Д.С.) измерялась прибором: рН-метр-ионометр «Эксперт 001».

По результатам проведенных исследований был разработан вероятный механизм, повышающий скорость образования зародышей СаСО3, основанный на отрицательном знаке заряда поверхности микропузырька и диссоциации HCO3- на Н+ и CO32-.

В результате прохождения водного потока через мембрану примеси, растворенные в электролите, распадались по механизму Гомберовской диссоциации, возникали пары свободных радикалов, знак энергии взаимодействия которых с окружающими молекулами положителен (Gomberg М. Ueber die Darstellung dess Triphenyl-chlor-metanes. // Ber. Dt. Chem. Ges. - 1900, p. 3144-3149, Bargon J., Fischer H., Johnsen U. Kernresonans-Emissionslinien waehrend rascher Radikal - reaktionen. 1 Aufnahmeverfahren und Beispiele. - «Z. Naturforsch», 1967, Bd. 22a, S. 1551-1556).

Состав газа, полученного при дегазировании водного потока, значительно отличается от состава воздуха, что подтверждается хроматографическим анализом. Состав газа полученного после дегазации и справочные данные по составу окружающего воздуха приведены в таблице 1.

Диапазоны эксперимента: температура T1=+1…+90°С; давление в системе P1=2…2,5 атм; периодичность проведения измерений 10 мин.

Результаты представлены в таблице 1.

Было установлено, что газовый микропузырек в отличие от газового пузыря, окруженного водой с диполями на его поверхности, в нашем случае имеет отрицательный заряд, что существенно меняет механизм образования микрозародышей СаСО3 на поверхности микропузырька в системе жидкость - газ.

Электрические показатели водного потока после прохождения через мембрану представлены в таблице 2.

Согласно экспериментальным данным имеем объем газовой фазы в воде 5-7% об.

Исходя из предположения, что в 1 мл (или 1 см3) содержится 5-7% газа. Тогда объем газа Vг будет составлять

1 мл - 100%,

X мл - 5%, X=Vг=0,05 мл (см3).

Предположим что диаметр d воздушных пузырьков - 100 мкм, или 0,01 см.

Тогда объем шара газового пузыря Vгп V г п = 1 6 π d 3 = 0,000000523 с м 3 .

Определим число газовых пузырей n диаметром 0,01 см.

n = V г V г п n0,01=95602 шт.

Для воздушных пузырьков диаметром d - 50 мкм, или 0,005 см.

V г п = 1 6 π d 3 = 0,00000006542   с м 3

n0,005=764292 шт.

Для воздушных пузырьков диаметром d - 10 мкм, или 0,001 см.

V г п = 1 6 π d 3 = 0 ,000 .000 .000523 ñм 3

n0,001=95602294 шт.

На фиг. 2 представлена зависимость количества воздушных пузырьков в 1 мл жидкости от их диаметра.

Количество микропузырьков составляло от 5 до 8% от объема жидкой фазы.

В качестве материала перегородки-мембраны определяющим являлось использование материалов: органических - фторопласт-4, капрона и неорганических - латунь и нержавеющая сталь (данные материалы выбраны, т.к. они не подвергаются коррозии, не изменяются размеры отверстий).

Скорость потока, в зависимости от давления водопроводной сети, при 252 кПа, составила в одном отверстии - 20 м/с, а значения критерия Рейнольдса повышалось от 1400 до 3430.

Предложен вероятный механизм, повышающий скорость образования зародышей СаСО3, основанный на отрицательном заряде поверхности микропузырька и диссоциации НСО3- на Н+и СО32-.

За счет увеличения площади поверхности контакта фаз скорость образования кристаллов солей временной жесткости повышалась в 1,4 раза.

Под действием магнитного поля от 1,2 до 1,5 Тесла повышалось отклонение микропузырьков газовой фазы в направлении магнита, приставленного к стеклянному стакану, что подтверждало, исходя из закона Лоренца, отрицательный заряд поверхности микропузырька.

Изменялся химический состав газовой фазы, выделенный из воды, при получении микродисперсных систем, в отличие от известного состава по справочной литературе: азот повышается от 78,0% до 81,2%; кислород снижается от 20,9% до 15,9%. Это наблюдается в результате общего увеличения объема выделяемых газов, так и при перераспределении его по компонентам.

Похожие патенты RU2597318C2

название год авторы номер документа
УСТРОЙСТВО ОБРАБОТКИ ЖИДКОСТИ 2014
  • Профи Грегуар
  • Профи Александр
RU2685670C2
СПОСОБ УМЯГЧЕНИЯ ВОДЫ 2012
  • Косинцев Виктор Иванович
  • Маланова Наталья Викторовна
  • Сечин Александр Иванович
  • Журавков Сергей Петрович
  • Яворовский Николай Александрович
RU2522602C1
СПОСОБ КОНЦЕНТРИРОВАНИЯ И ИЗВЛЕЧЕНИЯ ВЕЩЕСТВ ИЗ РАСТВОРОВ 1989
  • Ивашов Валерий Иванович
RU2010006C1
Устройство для воспроизведения и передачи единиц массовой концентрации газов в жидких средах 2019
  • Горшков Аркадий Иванович
  • Мельниченко Артем Николаевич
  • Прохоркина Ольга Владиславовна
RU2722967C1
МИКРОШАРИКИ МИКРОННОГО ИЛИ СУБМИКРОННОГО РАЗМЕРА С ПОЛИМЕРНОЙ ОБОЛОЧКОЙ И СПОСОБ ИХ ИЗГОТОВЛЕНИЯ 1991
  • Даниель Бишон[Fr]
  • Филипп Бюсса[Fr]
  • Мишель Шнайдер[Fr]
RU2110991C1
УСТАНОВКА БЕЗРЕАГЕНТНОЙ ОЧИСТКИ И ОБЕЗЗАРАЖИВАНИЯ ВОДЫ 2013
  • Домашенко Владимир Григорьевич
  • Домашенко Владимир Владимирович
  • Цхе Алексей Викторович
RU2524601C1
УСТРОЙСТВО И СПОСОБ ПОЛУЧЕНИЯ ГАЗОВЫХ ПУЗЫРЬКОВ В ЖИДКОСТИ 2019
  • Бири, Матан
  • Шульц, Йоанна
  • Тичек, Грегор
  • Габрис, Торстен
RU2788624C2
ОБРАЗОВАНИЕ ТЕРАПЕВТИЧЕСКОГО ВСПЕНЕННОГО МАТЕРИАЛА С МИКРОПУЗЫРЬКАМИ ГАЗА 2000
  • Осман Тарик
  • Флинн Шейла Бронвен
  • Райт Дэвид Дэкин Иорверт
  • Харман Энтони Дэвид
  • Бурман Тимоти Дэвид
RU2261700C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ВОДЫ 1996
  • Мозжухин Евгений Валентинович
  • Тюрин Александр Николаевич
RU2118297C1
СПОСОБ ИЗМЕРЕНИЯ УРОВНЕЙ НАСЫЩЕНИЯ УГЛЕКИСЛЫМ ГАЗОМ В НАПИТКАХ В ОТКРЫТОЙ ЕМКОСТИ 2016
  • Бахарев, Алексей
  • Мойсе, Херриот
  • Женг, Мин Фенг
RU2721588C2

Иллюстрации к изобретению RU 2 597 318 C2

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ МИКРОДИСПЕРСНЫХ СИСТЕМ

Изобретение относится к области термодинамики многофазных систем и может быть использовано для получения микродисперсных систем. Растворенные в воде газы в соответствии с законом Генри выделяются из нее при прохождении через отверстия в перегородке в виде пузырьков размером от 5 мкм и более. Определяемая средняя величина электрического потенциала в потоке составляет - 98,8 мВ. Диаметр отверстий в перегородке определяется величиной частиц механических примесей до 300 мкм и составляет 400 мкм. Изобретение позволяет повысить эффективность извлечения растворенного в воде газа. 2 ил., 2 табл.

Формула изобретения RU 2 597 318 C2

Способ получения микродисперсных систем, отличающийся тем, растворенные в воде газы в соответствии с законом Генри выделяются из раствора при прохождении через отверстия в перегородке в виде пузырьков с размером от 5 мкм и более, а определяемая средняя величина электрического потенциала в потоке составляет - 98,8 мВ, диаметр отверстий в перегородке определяется величиной частиц механических примесей до 300 мкм и составляет 400 мкм.

Документы, цитированные в отчете о поиске Патент 2016 года RU2597318C2

МЕМБРАННОЕ РАЗДЕЛЕНИЕ ГАЗОВ 2005
  • Ферон Пол Хуберт Мария
  • Волков Владимир Васильевич
  • Хотимский Валерий Самуилович
  • Тепляков Владимир Васильевич
RU2390372C2
СПОСОБ ОБРАБОТКИ ЖИДКОСТЕЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1992
  • Плугин Александр Илларионович
RU2057074C1
JP 11156342 A, 15.06.1999
ДЫТНЕРСКИЙ Ю.И., Барометрические процессы, Теория и расчет, Москва, "Химия", 1986, с
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1

RU 2 597 318 C2

Авторы

Папин Андрей Владимирович

Игнатова Алла Юрьевна

Солодов Вячеслав Сергеевич

Косинцев Виктор Иванович

Маланова Наталья Викторовна

Сечин Александр Иванович

Яворовский Николай Александрович

Журавков Сергей Петрович

Бошенятов Борис Владимирович

Ковалев Олег Викторович

Даты

2016-09-10Публикация

2014-05-12Подача