СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА Российский патент 2016 года по МПК C23C14/06 C23C14/24 C23C14/58 B23B27/14 

Описание патента на изобретение RU2598712C1

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Известен способ повышения стойкости режущего инструмента (РИ), при котором на его поверхность наносят износостойкое ионно-плазменное покрытие из нитрида титана (TiN) (см. Табаков В.П. Работоспособность режущего инструмента с износостойкими покрытиями на основе сложных нитридов и карбонитридов титана. Ульяновск: УлГТУ, 1998. 123 с.). К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе покрытия имеют относительно низкую твердость. В результате этого покрытие в большей мере подвергается износу, в нем быстро зарождаются и распространяются трещины, приводящие к разрушению покрытия, что снижает стойкость РИ с покрытием.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ нанесения многослойного покрытия, состоящего из нижнего слоя нитрида титана TiN и верхнего слоя нитрида титана и циркония TiZrN (см. Табаков В.П., Чихранов А.В. Износостойкие покрытия режущего инструмента, работающего в условиях непрерывного резания. - Ульяновск: УлГТУ, 2007. - 255 с.), принятый за прототип.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного режущего инструмента с покрытием, принятого за прототип, относится то, что в известном способе многослойное покрытие обладает недостаточной твердостью, а следовательно, трещиностойкостью. В результате покрытие плохо сопротивляется процессам износа и разрушения и быстро разрушается при резании.

Повышение в последнее время стоимости металлорежущего инструмента и ужесточение требований к точности обрабатываемых деталей сделало еще более актуальной проблему повышения стойкости РИ. Одним из путей повышения стойкости и, как следствие, работоспособности РИ с покрытием является нанесение покрытий многослойного типа со слоями с различными физико-механическими свойствами. Наличие в покрытии верхнего слоя, обладающего высокой твердостью, способствует снижению интенсивности износа РИ с многослойным покрытием. Для повышения прочности сцепления покрытия с инструментальной основой оно должно иметь в своем составе нижний слой с повышенными адгезионными свойствами. Кроме того, создание микрослоистости в верхнем и промежуточном слоях покрытия приводит к увеличению его твердости и трещиностойкости и, как следствие, работоспособности РИ с покрытием.

Технический результат - повышение работоспособности РИ.

Указанный технический результат при осуществлении изобретения достигается тем, что вначале наносят многослойное ионно-плазменное покрытие, состоящее из нижнего слоя нитрида титана, промежуточного - нитрида соединения титана и циркония при их соотношении, мас.%: титан 76,0-82,0, цирконий 18,0-24,0, и верхнего - нитрида соединения титана, циркония и ниобия при их соотношении, мас.%: титан 74,0-82,0, цирконий 12,0-16,0, ниобий 6,0-10,0, а нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый из которых выполняют из титана, второй - составным из титана циркония и располагают противоположно первому, а третий изготавливают составным из титана и ниобия и располагают между ними, причем нижний слой наносят с использованием первого катода, промежуточный слой - с использованием первого и второго катодов, а верхний слой - с использованием всех трех катодов, а затем используют обработку покрытия лазерным излучением с плотностью мощности 38…46 кВт/см2.

Такая структура покрытия позволяет получить высокую прочность сцепления с основой из-за наличия в покрытии нижнего слоя нитрида титана, обладающего высокой адгезией с инструментальной основой. Промежуточный и верхний слои обладают высокой твердостью из-за дополнительного легирования материала слоя, наличию в структуре микрослоистости, получаемой при нанесении покрытий по предлагаемой схеме расположения катодов.

Сущность изобретения заключается в следующем. В покрытии при резании происходят процессы трещинообразования, приводящие к его разрушению. В этих условиях покрытие должно иметь слоистую структуру для торможения трещин. Нижний слой покрытия должен обладать высокой адгезией с инструментальным материалом. Слои покрытия должны обладать высокой твердостью для повышения износо- и трещиностойкости. При этом слои многослойного покрытия должны иметь высокую прочность связи между собой, что обеспечивается их высоким сродством друг с другом из-за наличия общих элементов.

Пластины с покрытиями, полученные с отклонениями от указанной технологии получения, показали более низкие результаты.

Для экспериментальной проверки заявленного способа было нанесено покрытие-прототип, а также многослойное покрытие по предлагаемому способу.

Нанесение предлагаемого покрытия осуществляется следующим образом. Твердосплавные пластины МК8 (размером 4,7×12×12 мм) промывают в ультразвуковой ванне, протирают ацетоном, спиртом и устанавливают на поворотном устройстве в вакуумной камере установки «Булат-6», снабженной тремя катодами, расположенными горизонтально в одной плоскости. При нанесении покрытия используют первый катод, изготовленный из титана, второй составной катод, изготовленный из титана и циркония и расположенный противоположно первому, и третий составной катод, изготовленный из титана и ниобия и расположенный между ними.

Камеру откачивают до давления 6,65·10-3 Па, включают поворотное устройство, подают на него отрицательное напряжение 1,1 кВ, включают первый катод и при токе дуги 100 А производят ионную очистку и нагрев пластин до температуры 580-620°C. Ток фокусирующей катушки 0,4 А. Затем при отрицательном напряжении 220 В, токе дуги 110 А, токе катушек 0,3 А, подаче реакционного газа-азота и включенном первом катоде осаждают нижний слой покрытия TiN толщиной 2,0 мкм. Далее при отрицательном напряжении 250 В, токе дуги 120 А, токе катушек 0,3 А и подаче реакционного газа азота и включенных первом и втором катодах осаждают промежуточный слой покрытия TiZrN толщиной 2,0 мкм. Верхний слой покрытия TiZrNbN толщиной 2,0 мкм наносят при отрицательном напряжении 250 В, токе дуги 120 А, токе катушек 0,3 А, включенных трех катодах и подаче реакционного газа-азота. Затем отключают испарители, подачу реакционного газа, напряжение и вращение приспособления. Через 15-20 мин камеру открывают и извлекают инструмент с покрытием.

Лазерная обработка покрытий и инструментальной матрицы осуществлялась на импульсной лазерной установке "Квант-15". Образцы устанавливались на стол приспособления, который двигался поступательно со скоростью 0,3…0,42 м/мин.

Диаметр лазерного пучка был равен 1 мм. Лазерную обработку проводили при плотности мощности 38…46 кВт/см2 и длительности импульса излучения 4 мс.

Перед обработкой лазерным излучением на поверхность образца равномерно наносилось поглощающее покрытие - порошок графита ПИ-15 толщиной 30…50 мкм с целью повышения коэффициента поглощения обрабатываемой поверхности. После обработки поглощающее покрытие с поверхности пластины удалялось этиловым спиртом или аналогичным растворителем.

Микротвердость покрытий определяли на микротвердомере «ПМТ-3» под нагрузкой 100 г. Стойкостные испытания режущего инструмента проводили при продольном точении заготовок из стали 30ХГСА на токарном станке 16К20. Режимы резания: скорость резания V=160 м/мин, подача S=0,3 мм/об, глубина резания t=1,0 мм, обработка производилась без применения СОЖ. Испытывали твердосплавные пластины марки МК8, обработанные по известному и предлагаемому способам. Критерием износа служила фаска износа по задней поверхности шириной 0,4 мм.

В таблице 1 приведены результаты испытаний РИ с полученными покрытиями.

Как видно из приведенных в таблице 1 данных, стойкость пластин с покрытиями, нанесенными по предлагаемому способу, выше стойкости пластин с покрытием, нанесенным по способу-прототипу в 1,65-2,13 раза.

Похожие патенты RU2598712C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2015
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сизов Сергей Валерьевич
RU2596522C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2015
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сизов Сергей Валерьевич
RU2596525C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2014
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сагитов Дамир Ильдарович
  • Сизов Сергей Валерьевич
RU2585570C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2015
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сизов Сергей Валерьевич
RU2596524C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2015
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сагитов Дамир Ильдарович
RU2622532C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2015
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сагитов Дамир Ильдарович
RU2622539C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2010
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
RU2424370C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2011
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Смирнов Максим Юрьевич
  • Романов Александр Александрович
RU2464343C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2015
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сизов Сергей Валерьевич
RU2596531C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2015
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сизов Сергей Валерьевич
RU2596520C1

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Наносят нижний слой из нитрида титана. Затем наносят промежуточный слой из нитрида соединения титана и циркония при их соотношении, мас.%: титан 76,0-82,0, цирконий 18,0-24,0, на который наносят верхний слой из нитрида соединения титана, циркония и ниобия при их соотношении, мас.%: титан 74,0-82,0, цирконий 12,0-16,0, ниобий 6,0-10,0. Нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами. Первый катод выполняют из титана, второй - составным из титана и циркония и располагают противоположно первому, а третий - составным из титана и ниобия и располагают между ними. Полученное покрытие обрабатывают лазерным излучением с плотностью мощности 38…46 кВт/см2. В результате повышаются трещиностойкость и прочность многослойного покрытия и соответственно работоспособность режущего инструмента. 1 табл.

Формула изобретения RU 2 598 712 C1

Способ получения многослойного покрытия для режущего инструмента, отличающийся тем, что вначале наносят многослойное ионно-плазменное покрытие, состоящее из нижнего слоя нитрида титана, промежуточного - нитрида соединения титана и циркония при их соотношении, мас.%: титан 76,0-82,0, цирконий 18,0-24,0, и верхнего - нитрида соединения титана, циркония и ниобия при их соотношении, мас.%: титан 74,0-82,0, цирконий 12,0-16,0, ниобий 6,0-10,0, а затем осуществляют обработку полученного покрытия лазерным излучением с плотностью мощности 38…46 кВт/см2, причем нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый из которых выполняют из титана, второй - составным из титана циркония и располагают противоположно первому, а третий изготавливают составным из титана и ниобия и располагают между ними, при этом нижний слой наносят с использованием первого катода, промежуточный слой - с использованием первого и второго катодов, а верхний слой - с использованием всех трех катодов.

Документы, цитированные в отчете о поиске Патент 2016 года RU2598712C1

В.П.Табаков и др
"Износостойкие покрытия режущего инструмента, работающего в условиях непрерывного резания ", Ульяновск, УлГТУ, 2007, с.255;RU 2413790C2, 10.03.2011
ПЛАСТИНА РЕЖУЩЕГО ИНСТРУМЕНТА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 1996
  • Леверенз Рой В.
  • Бост Джон
RU2173241C2
JP 11511078A, 28.09.1999.

RU 2 598 712 C1

Авторы

Табаков Владимир Петрович

Чихранов Алексей Валерьевич

Власов Станислав Николаевич

Сизов Сергей Валерьевич

Даты

2016-09-27Публикация

2015-03-13Подача