Изобретение относится к перистальтическим насосам.
Конкретнее и путем примера изобретение относится к перистальтическому насосу для диализного аппарата, содержащему, во-первых, пластину, известную как корпус насоса, которая включает, по существу, плоскую поверхность, напротив которой должна быть расположена гибкая трубка для прохождения текучей среды, и, во-вторых, систему для приложения силы, содержащую множество прижимных элементов, таких как ролики, и приводные средства для перемещения указанных прижимных элементов, позволяющие перемещать указанные прижимные элементы при прижатии к трубке, для того, чтобы деформировать ее относительно указанного корпуса насоса.
Было обнаружено, что с определенными перистальтическими насосами гибкая трубка не может достаточно сжиматься между корпусом насоса и системой для приложения силы, и это препятствует протеканию текучей среды в трубке с достаточной скоростью потока и/или равномерностью. И наоборот, с другими насосами гибкая трубка сжимается слишком крепко между корпусом насоса и системой для приложения силы, и это может также препятствовать протеканию текучей среды и может повреждать трубку.
Известны документы GB 2230301, GB 953579, BE 685301 и EP 0837242, и они описывают насосы, каждый из которых включает участок для поддержания трубки для прохождения текучей среды, который является подвижным относительно системы для приложения силы. Перемещение, обеспеченное между участком для поддержания трубки для прохождения текучей среды и системой для приложения силы, используется для освобождения прохода так, чтобы позволять вставлять трубку в него или для того, чтобы уменьшать или увеличивать площадь поверхности контакта между системой для приложения силы и трубкой для того, чтобы уменьшать или увеличивать поток текучей среды в трубке. Однако остается трудным достигать относительное расположение между корпусом насоса и системой для приложения силы надежным, точным и воспроизводимым образом. Более того, такие насосы не препятствуют плохой адаптации к трубке относительного расположения между корпусом насоса и системой для приложения, таким образом приводя к риску повреждения трубки. Документ FR 2 594 496 относится к трубке для переноса текучей среды, представляющей промежуточный участок, имеющий сечение, которое больше, и стенку с толщиной, которая значительно меньше, с сопротивлением деформации, которое, по существу, ниже, чем в других участах указанной трубки.
Задачей изобретения является обеспечение перистальтического насоса, делающего возможным преодоление вышеотмеченных проблем.
С этой целью изобретение обеспечивает перистальтический насос для диализного аппарата, содержащий, во-первых, пластину, известную как корпус насоса, которая включает, по существу, плоскую поверхность, напротив которой должна быть расположена гибкая трубка для прохождения текучей среды, и, во-вторых, систему для приложения силы, содержащую множество прижимных элементов, таких как ролики, и приводные средства для перемещения указанных прижимных элементов, позволяющие перемещать указанные прижимные элементы при прижатии к трубке для того, чтобы деформировать ее относительно указанного корпуса насоса, причем указанный корпус насоса установлен с возможностью перемещения относительно системы для приложения силы между положением, разнесенным от указанной системы для приложения силы, и положением, близким к указанной системе для приложения силы;
причем указанный насос отличается тем, что он включает средства определения величины, характеризующей силу, прикладываемую к трубке, когда указанная трубка находится в ее положении, расположенном между системой для приложения силы и корпусом насоса; и
тем, что указанный насос дополнительно содержит средства управления для управления перемещением корпуса насоса относительно системы в зависимости от указанной определяемой величины.
Указанная определяемая сила соответствует силе сжатия, воздействию которой подвергается трубка при зацеплении между системой для приложения силы и указанным корпусом насоса, когда один перемещается по направлению к другому. С учетом силы, прикладываемой к трубке, для того, чтобы управлять перемещением корпуса насоса относительно системы для приложения силы, для корпуса насоса становится возможным переходить из положения, в котором он разнесен от системы для приложения силы и в котором гибкая трубка может быть свободно расположена для того, чтобы легко вставлять ее в насос, в близкое положение, в котором трубка сжата с силой сжатия, которая автоматически адаптирована путем измерения силы, прикладываемой к трубке, так, что указанная сила сжатия является достаточной, чтобы позволять системе для приложения силы деформировать ее, и, таким образом, чтобы заставлять текучую среду протекать эффективно, при этом будучи ограниченной так, чтобы не повреждать трубку. Указанная измеряемая сила является главным образом поперечной, предпочтительно ортогональной, относительно оси трубки. Предпочтительно это измерение силы выполняется при отсутствии текучей среды, текущей по трубке, т.е. когда элементы системы для приложения силы, которые используются, чтобы заставлять текучую среду протекать, например, цилиндры, являются неподвижными (относительно друг друга).
Указанная сила измеряется на заданной частоте до тех пор, пока не будет достигнуто заданное значение или значение, содержащееся в диапазоне, заданном около заданного значения, для того, чтобы быть способной управлять перемещением корпуса насоса относительно системы для приложения силы в реальном времени.
Выбор измерения силы сжатия так, чтобы управлять перемещением корпуса насоса относительно системы для приложения силы, в особенности предпочтителен для того, чтобы обеспечивать скорость потока текучей среды по трубке, которая является достаточной, при уменьшении риска повреждения трубки, так как посредством этого параметра прикладываемой силы может быть точно получена заданная степень сжатия надежным и воспроизводимым образом, получаемая для трубок различных диаметров или материалов.
В частности, управление перемещением корпуса насоса в зависимости от силы сжатия, прикладываемой к трубке, делает возможным автоматически адаптировать силу сжатия трубки для того, чтобы достигать заданное значение так, что указанная сила является достаточной, чтобы позволять системе для приложения силы деформировать трубку и, таким образом, заставлять текучую среду протекать эффективно, при этом будучи ограниченной так, чтобы не повреждать трубку и чтобы обеспечивать эффективный поток текучей среды.
Выполнение насоса таким образом упрощает установку трубки в корпусе насоса, например, одноразовой кровопроводящей магистрали.
Согласно предпочтительной характеристике изобретения указанный корпус насоса установлен с возможностью прямолинейного перемещения вдоль направления, которое является поперечным (предпочтительно ортогональным) относительно указанной плоской поверхности корпуса насоса.
Согласно предпочтительной характеристике изобретения указанный насос включает двигательные средства для перемещения указанного корпуса насоса между указанным близким положением и указанным разнесенным положением.
Согласно предпочтительной характеристике изобретения указанные средства управления включают средства определения заданного значения для указанной величины и регулировочные средства, которые выполнены с возможностью регулирования перемещения корпуса насоса в направлении, перемещающем систему для приложения силы ближе или еще дальше в зависимости от определенного значения указанной величины для того, чтобы достигать указанное заданное значение.
Согласно предпочтительной характеристике изобретения указанные средства определения величины, характеризующей силу, прикладываемую к трубке, содержат по меньшей мере один тензометр и предпочтительно множество тензометров.
Согласно предпочтительной характеристике изобретения указанные средства приведения в перемещение прижимных элементов включают элемент контура, который соединяет прижимные элементы друг с другом, и два вращательных цилиндра, расположенные внутри и на противоположных концах указанного элемента контура, причем по меньшей мере один из цилиндров приводится в действие двигателем для того, чтобы приводить элемент контура в перемещение вокруг указанных цилиндров.
Согласно предпочтительной характеристике изобретения указанный насос включает кожух, в котором размещены система и корпус насоса, а корпус насоса установлен с возможностью перемещения относительно указанного кожуха.
Согласно предпочтительной характеристике изобретения указанный насос включает кожух, в котором размещены система и корпус насоса, и указанный насос включает диафрагму, которая во вставленном положении внутри трубки между системой для приложения силы и корпусом насоса продолжается вокруг периферийной стенки указанной трубки для того, чтобы образовывать защитный кожух вокруг указанной трубки во взаимодействии со стенкой кожуха.
Гибкая герметичная диафрагма делает возможным изолирование внутренней части насоса от трубки, и это делает возможным исключение загрязнения внутренней части аппарата в случае протечки. Более того, герметичная гибкая диафрагма также улучшает звукоизоляцию насоса.
Согласно предпочтительной характеристике изобретения указанная диафрагма изготовлена из непроницаемого для жидкости гибкого материала.
Изобретение может быть легко понято при прочтении следующего описания вариантов выполнения, данного со ссылкой на сопровождающие чертежи.
Фиг. 1 представляет собой схематический вид линейного перистальтического насоса в варианте выполнения изобретения;
фиг. 2 представляет собой вид в перспективе внутренней части участка насоса на фиг. 1;
фиг. 3 представляет собой вид в перспективе герметичной диафрагмы для окружения трубки, вставленной в насос на фиг. 1;
фиг. 4 представляет собой вид в перспективе корпуса насоса и системы для приложения силы насоса на фиг. 1 в разнесенном положении так, чтобы обеспечивать вставку указанной трубки; и
фиг. 5 представляет собой вид в перспективе корпуса насоса и системы для приложения силы насоса на фиг. 1 в близком положении.
Со ссылкой на чертежи и как отмечено выше, изобретение относится к линейному перистальтическому насосу 1 для диализного аппарата. Указанный перистальтический насос 1 содержит пластину, известную как корпус 3 насоса, которая включает, по существу, плоскую поверхность 32, напротив которой должна быть расположена гибкая трубка 5 для прохождения текучей среды. Указанная поверхность 32 считается плоской или ровной, т.е. прямой, в отличие от поверхностей контакта в контакте с трубкой корпусов так называемых "вращательных" перистальтических насосов, которые представляют кругообразную изогнутую форму.
Перистальтический насос 1 также содержит систему 2 для приложения силы, причем система имеет множество прижимных элементов 7 и приводные средства для перемещения указанных прижимных элементов 7, позволяющие перемещать указанные прижимные элементы при прижатии к трубке для того, чтобы деформировать ее относительно указанного корпуса 3 насоса.
Указанный корпус 3 насоса и указанная система 2 размещены относительно друг друга так, чтобы позволять располагать гибкую трубку 5 для прохождения текучей среды между плоской поверхностью 32 корпуса 3 насоса и системой 2. Указанные прижимные элементы 7 перемещаются по траектории замкнутого контура, которая описана ниже. Эта траектория замкнутого контура включает участок, направленный к стороне корпуса 3 насоса, и это позволяет прижимным элементам 7, проходящим по этому участку, прижимать трубку к плоской поверхности 32 корпуса 3 насоса.
Предпочтительно указанный насос используется для нагнетания крови в диализном аппарате. В этом случае указанная трубка 5 образует кровопроводящую магистраль.
Указанная плоская поверхность 32 направлена к указанной системе 2 для приложения силы для того, чтобы делать возможным для указанной системы прикладывать силу сжатия к периферийной стенке указанной гибкой трубки 5, расположенной напротив корпуса 3 насоса.
Указанный корпус 3 насоса установлен с возможностью перемещения относительно системы 2 для приложения силы между положением, разнесенным от указанной системы для приложения силы (фиг. 4), и положением, близким к указанной системе 2 для приложения силы (фиг. 5). Таким образом, указанный корпус 3 насоса и система 2 для приложения силы определяют между ними пространство для вставки, по существу, прямой гибкой трубки, так как она продолжается вдоль плоской поверхности 32 корпуса насоса.
Когда указанная система 2 для приложения силы находится в положении, разнесенном от кожуха насоса, пространство, оставшееся свободным между системой 2 для приложения силы и корпусом насоса, является достаточным для свободной вставки трубки 5 между системой 2 для приложения силы и корпусом 3 насоса. Как только трубка 5 расположена напротив плоской поверхности 32 корпуса 3 насоса, корпус 3 насоса и система 2 переводятся в близкое положение для того, чтобы делать возможным для системы 2 прикладывать силу к периферийной стенке трубки 5 с одного конца пространства для вставки трубки по направлению к другому концу.
Сила прикладывается к периферийной стенке трубки 5 с помощью указанных прижимных элементов 7, прижимающихся к периферийной стенке указанной трубки так, чтобы постепенно деформировать ее вдоль ее участка, прижимающегося к плоской поверхности 32 корпуса 3 насоса, и таким образом, заставляющих текучую среду, содержащуюся в трубке 5, протекать от одного конца поверхности 32 по направлению к ее другому концу. Указанный корпус 3 насоса установлен с возможностью прямолинейного перемещения вдоль (предпочтительно ортогонального) направления D31, которое является поперечным к указанной плоской поверхности 32 корпуса насоса.
Указанный насос включает двигательные средства 31 для перемещения указанного корпуса 3 насоса между указанным более близким положением и указанным разнесенным положением.
Указанный насос 1 также включает средства 35 определения величины, которая характеризует силу, прикладываемую к периферийной стенке трубки 5, когда указанная трубка 5 находится в ее положении, расположенном между системой 2 для приложения силы и корпусом 3 насоса. Указанные средства 35 определения величины, характеризующей силу, прикладываемую к трубке 5, включают по меньшей мере один тензометр. Предпочтительно указанный по меньшей мере один тензометр расположен на пластине, размещенной так, чтобы деформироваться в зависимости от относительного положения между системой 2 и указанным корпусом 3 насоса. Предпочтительно указанные средства 35 включают два или четыре тензометра.
Указанный насос 1 дополнительно содержит средства 36 управления для управления перемещением корпуса 3 насоса относительно системы 2 в зависимости от указанной определенной величины.
Указанные средства управления образованы электронно-вычислительным блоком для обработки и вычисления. Указанный блок может быть выполнен в форме электронной схемы, обеспеченной микроконтроллером или микропроцессором, связанным с устройством памяти для хранения данных. Таким образом, в описании ниже, когда определено, что заданные средства выполнены с возможностью выполнения заданной операции, следует понимать, что электронно-вычислительная система, образующая указанные средства, включает компьютерные команды, делающие возможным выполнение указанной операции.
Указанные средства 36 управления включают средства 360 определения заданного значения для указанной величины. Это заданное значение соответствует силе, требуемой для сжатия трубки 5 между системой 2 и корпусом 3 насоса. Указанные средства 36 управления дополнительно включают регулировочные средства 361, которые выполнены с возможностью регулирования перемещения корпуса 3 насоса в направлении, перемещающем систему 2 для приложения силы ближе или еще дальше в зависимости от определенного значения указанной величины для того, чтобы достигать указанное заданное значение.
Таким образом, с использованием средств 35 определения указанные средства 36 регулирования выполнены с возможностью получения указанной величины, характеризующей силу, прикладываемую к периферийной стенке трубки 5, и сравнения этого полученного значения с сохраненным заданным значением. В зависимости от результата этого сравнения средства 36 управления управляют двигателем 31 так, что он перемещает корпус 3 насоса по направлению к или от системы 2 до тех пор, пока не будет достигнуто значение, которое близко к заданному значению или которое расположено в заданном диапазоне относительно заданного значения.
Указанные приводные средства для перемещения прижимных элементов 7 включают элемент 6 контура, который соединяет прижимные элементы 7 друг с другом, и два вращательных цилиндра 8, расположенные внутри и на противоположных концах указанного элемента 6 контура. По меньшей мере один из цилиндров 8 приводится в действие двигателем для того, чтобы заставлять элемент 6 контура перемещаться вокруг указанных цилиндров 8. Предпочтительно прижимные элементы 7 представляют собой ролики.
Элемент 6 контура содержит приводной ремень, размещенный в контуре вокруг цилиндров 8. Один из цилиндров 8 приводится в движение двигателем 81 так, что указанный цилиндр образует цилиндр, пригодный для приведения в движение ремня вокруг указанных цилиндров. Другой цилиндр образует опору для направления перемещения ремня.
Ролики 7 установлены с возможностью принуждения к перемещению с ремнем 6, и они выступают из внешней поверхности указанного ремня так, что трубка сжимается, когда указанные ролики перемещаются вдоль трубки.
Как объяснено выше, элемент контура включает по меньшей мере один, по существу, прямой участок, который продолжается, по существу, параллельно плоской поверхности 32 корпуса 3 насоса, так, что ролики, которые перемещаются вдоль указанного прямого участка, сжимают трубку от одного конца участка по направлению к другому концу.
Указанный насос включает кожух 10, в котором размещены система2 и корпус 3 насоса, а корпус 3 насоса установлен с возможностью перемещения относительно указанного кожуха 10.
Как показано конкретнее на фиг. 3, указанный насос 1 включает диафрагму 9, которая во вставленном положении внутри трубки 5 между системой 2 для приложения силы и корпусом 3 насоса продолжается вокруг периферийной стенки указанной трубки 5 для того, чтобы образовывать защитный кожух вокруг указанной трубки 5 во взаимодействии со стенкой кожуха 10, противоположной нижней части диафрагмы.
Указанная диафрагма 9 изготовлена из непроницаемого для жидкости гибкого материала.
Предпочтительно может быть обеспечено пространство, остающееся свободным между системой 2 и корпусом 3 насоса, располагаемое в верхнем участке насоса так, чтобы быть легко доступным для оператора.
Изобретение никоим образом не ограничено вариантами выполнения, описанными и показанными, и специалист в области техники может выполнять любое его изменение в соответствии с его замыслом.
название | год | авторы | номер документа |
---|---|---|---|
ЛИНЕЙНЫЙ ПЕРИСТАЛЬТИЧЕСКИЙ НАСОС | 2012 |
|
RU2606692C2 |
СПОСОБ И УСТРОЙСТВО ДЛЯ АСЕПТИЧЕСКОЙ ПОДАЧИ БОЛЬШОГО КОЛИЧЕСТВА ПОРЦИЙ ТЕКУЧЕЙ СРЕДЫ | 2009 |
|
RU2508245C2 |
УСТРОЙСТВО ДЛЯ ЭКСТРАКОРПОРАЛЬНОЙ ОБРАБОТКИ КРОВИ | 2013 |
|
RU2648223C2 |
УСТАНОВКА ДЛЯ ПОДАЧИ ТЕКУЧЕЙ СРЕДЫ И ОТНОСЯЩИЕСЯ К НЕЙ СПОСОБЫ | 2007 |
|
RU2470853C2 |
ОБЪЕМНЫЙ НАСОС | 2018 |
|
RU2769063C2 |
ДОЗИРОВАНИЕ ТЕКУЧЕЙ СРЕДЫ В ОБЪЕМЕ МЕНЕЕ ОДНОГО МИЛЛИЛИТРА | 2015 |
|
RU2692445C2 |
УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ОТКРЫТИЕМ И ЗАКРЫТИЕМ ТРУБКИ | 2018 |
|
RU2765697C2 |
ЛЕГКОПЕРЕМЕЩАЕМАЯ СИСТЕМА ОЧИЩЕНИЯ КРОВИ | 2018 |
|
RU2776520C2 |
УСТРОЙСТВО И СПОСОБ ЛЕЧЕНИЯ УЧАСТКА ТКАНИ ПРИЛОЖЕНИЕМ ПОНИЖЕННОГО ДАВЛЕНИЯ | 2008 |
|
RU2459636C2 |
НАСОСНАЯ УСТАНОВКА ДЛЯ ДОЗИРОВАНИЯ ТЕКУЧЕГО ПРОДУКТА | 2019 |
|
RU2788661C2 |
Изобретение относится к перистальтическому насосу, например, для диализного аппарата. Содержит пластину, являющуюся корпусом 3 насоса 1, которая содержит плоскую поверхность 32, напротив которой расположена гибкая трубка 5 для прохождения текучей среды. Содержит систему 2 для приложения силы, содержащую множество прижимных элементов 7 в виде роликов. Приводные средства для перемещения прижимных элементов 7 позволяют перемещать прижимные элементы при прижатии их к трубке для деформирования ее относительно корпуса 3. Корпус 3 насоса установлен с возможностью перемещения относительно системы 2 для приложения силы между положением, разнесенным от системы 2 для приложения силы, и положением, близким к системе 2 для приложения силы. Насос 1 дополнительно содержит средства 36 управления для управления перемещением корпуса 3 относительно системы 2 в зависимости от указанной определенной величины, соответствующей силе, прикладываемой к трубке. Средства 36 содержат средства 360 определения заданного значения для указанной величины и регулировочные средства 361. Повышается надежность насоса. 7 з.п. ф-лы, 5 ил.
Перистальтический насос (1), например, для диализного аппарата, содержащий, во-первых, пластину, известную как корпус (3) насоса, которая включает по существу плоскую поверхность (32), напротив которой должна быть расположена гибкая трубка (5) для прохождения текучей среды, и, во-вторых, систему (2) для приложения силы, содержащую множество прижимных элементов (7), таких как ролики, и приводные средства для перемещения указанных прижимных элементов (7), позволяющие перемещать указанные прижимные элементы при прижатии к трубке для того, чтобы деформировать ее относительно указанного корпуса (3) насоса;
причем указанный корпус (3) насоса установлен относительно системы (2) для приложения силы между положением, разнесенным от указанной системы (2) для приложения силы, и положением, близким к указанной системе (2) для приложения силы, отличающийся тем, что он включает в себя средства (35) определения величины, характеризующей силу, прикладываемую к трубке (5), когда указанная трубка (5) находится в положении, расположенном между системой (2) для приложения силы и корпусом (3) насоса; причем насос (1) дополнительно содержит средства (36) управления для управления перемещением корпуса (3) насоса относительно системы (2) в зависимости от указанной определенной величины; при этом указанные средства (36) управления содержат средства (360) определения заданного значения для указанной величины и регулировочные средства (361), которые выполнены с возможностью регулирования перемещения корпуса (3) насоса в направлении, перемещающем систему (2) для приложения силы ближе или еще дальше в зависимости от определенного значения указанной величины для того, чтобы достигать указанное заданное значение.
2. Насос (1) по п. 1, отличающийся тем, что указанный корпус (3) насоса установлен с возможностью прямолинейного перемещения вдоль направления, которое является поперечным, предпочтительно ортогональным, относительно указанной плоской поверхности (32) корпуса (3) насоса.
3. Насос (1) по п. 1 или 2, отличающийся тем, что он включает в себя двигательные средства (31) для перемещения указанного корпуса (3) насоса между указанным близким положением и указанным разнесенным положением.
4. Насос (1) по п. 1 или 2, отличающийся тем, что указанные средства (35) определения величины, характеризующей силу, прикладываемую к трубке (5), содержат по меньшей мере один тензометр и предпочтительно множество тензометров.
5. Насос (1) по п. 1 или 2, отличающийся тем, что указанные приводные средства для перемещения прижимных элементов (7) включают элемент (6) контура, который соединяет прижимные элементы (7) друг с другом, и два вращательных цилиндра (8), расположенные внутри и на противоположных концах указанного элемента (6) контура, причем по меньшей мере один из цилиндров (8) приводится в действие двигателем для того, чтобы запускать перемещение элемента (6) контура вокруг указанных цилиндров (8).
6. Насос (1) по п. 1 или 2, отличающийся тем, что он включает в себя кожух (10), в котором размещены система (2) и корпус (3) насоса; причем корпус (3) насоса установлен с возможностью перемещения относительно указанного кожуха (10).
7. Насос (1) по п. 1 или 2, отличающийся тем, что он включает в себя кожух (10), в котором размещены система (2) и корпус (3) насоса; при этом насос (1) содержит диафрагму (9), которая во вставленном положении внутри трубки (5) между системой для приложения силы и корпусом (3) насоса продолжается вокруг периферийной стенки указанной трубки (5) для того, чтобы образовывать защитный кожух вокруг указанной трубки (5) во взаимодействии со стенкой кожуха (10).
8. Насос (1) по п. 7, отличающийся тем, что указанная диафрагма (9) изготовлена из непроницаемого для жидкости гибкого материала.
СТЕНД ДЛЯ ПРОВЕРКИ КРУТЯЩЕГО МОМЕНТА СПИРАЛЬНЫХ ПРУЖИН | 2002 |
|
RU2230301C1 |
Перистальтический привод | 1986 |
|
SU1393929A1 |
Перистальтический насос | 1985 |
|
SU1288345A1 |
US 2010106082 A1, 29.04.2010 | |||
US 4617014 A, 14.10.1986. |
Авторы
Даты
2016-10-10—Публикация
2013-05-21—Подача