СПОСОБ УСИЛЕНИЯ И ДЕМОДУЛЯЦИИ ЧАСТОТНО-МОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ Российский патент 2016 года по МПК H03F3/38 H03D3/00 H03J3/00 

Описание патента на изобретение RU2599964C1

Изобретения относятся к областям радиосвязи, радиолокации, радионавигации и радиоэлектронной борьбы и могут быть использованы для создания многофункциональных устройств усиления амплитуды и демодуляции частотно-модулированных сигналов с увеличенным квазилинейным участком частотной демодуляционной характеристики при произвольных заданных характеристиках нелинейного элемента, цепи внешней обратной связи и нагрузки.

Известен способ усиления и частотной демодуляции высокочастотного сигнала, основанный на использовании энергии источника постоянного напряжения, организации внутренней обратной связи в нелинейном элементе путем использования в качестве него двухполюсного нелинейного элемента с отрицательным дифференциальным сопротивлением [Радиоприемные устройства. Под общей редакцией В.И. Сифорова. - М: Советское радио, 1974, с. 137-150], выполнении условий усиления путем согласования с заданным допуском отрицательного сопротивления с сопротивлением остальной части усилителя. Входную часть выполняют из параллельного колебательного контура. Выходную часть усилителя выполняют из фильтра нижних частот (ФНЧ), разделительной емкости и низкочастотной нагрузки [Гоноровский И.С. Радиотехнические цепи и сигналы. - М: Советское радио, 1977, с. 190-193, 290-293, 311-316]. Если средняя частота входного частотно-модулированного сигнала (ЧМС) совпадает со средней частотой левого склона амплитудно-частотной характеристики (АЧХ) колебательного контура, то ЧМС преобразуется в амплитудно-модулированный ЧМС (АЧМС). Нелинейный элемент разрушает (расщепляет) спектр АЧМС на высокочастотные и низкочастотные составляющие, ФНЧ выделяет низкочастотные составляющие, а остальные подавляет. Разделительная емкость устраняет постоянную составляющую. На низкочастотную нагрузку поступает низкочастотный сигнал, амплитуда которого изменяется по закону изменения частоты входного ЧМС. В результате одновременно обеспечивается усиление и демодуляция ЧМС.

Известно устройство усиления и частотной модуляции, состоящее из источника постоянного напряжения, устанавливающего рабочую точку на середине падающего участка вольт-амперной характеристики двухполюсного нелинейного элемента с отрицательным дифференциальным сопротивлением [Радиоприемные устройства. Под общей редакцией В.И. Сифорова. - М.: Советское радио, 1974, с. 137-150], входной цепи из параллельного колебательного контура и реактивного четырехполюсника, при этом параметры контура, двухполюсного нелинейного элемента и четырехполюсника выбраны из условия совпадения средней частоты левого склона АЧХ и средней частоты входного ЧМС и одновременного усиления амплитуды ЧМС. [Гоноровский И.С. Радиотехнические цепи и сигналы. - М: Советское радио, 1977, с. 190-193, 290-293, 311-316]. Принцип действия этого устройства состоит в следующем. При включении источника постоянного напряжения (тока) рабочая точка нелинейного элемента устанавливается на падающем участке его вольт-амперной характеристики. Благодаря наличию внутренней обратной связи в двухполюсном нелинейном элементе на участке с падающей вольт-амперной характеристикой возникает отрицательное дифференциальное сопротивление, которое в силу согласования с помощью реактивного четырехполюсника компенсирует потери в во всей цепи с заданным допуском. Благодаря этому, входной ЧМС со средней частотой, равной средней частоте левого склона колебательного контура, усиливается до уровня, при котором амплитуда выходит за пределы падающего участка вольт-амперной характеристики, а входной ЧМС преобразуется в АЧМС. Нелинейный элемент расщепляет (разрушает) спектр АЧМС на составляющие, ФНЧ выделяет НЧ составляющую, а остальные подавляет, разделительная емкость устраняет постоянную составляющую. НЧ составляющая, амплитуда которой изменяется по закону изменения частоты входного ЧМС, поступает на низкочастотную нагрузку. Происходит демодуляция ЧМС. Недостатком способа и устройства является простое суммирование функций усиления и частотной демодуляции. Если устройство эффективно в режиме усиления, то оно не эффективно в режиме частотной модуляции, и наоборот, если устройство эффективно в режиме частотной модуляции, то оно не эффективно в режиме усиления. Поэтому в общем случае возникают нежелательные частотные или нелинейные искажения в одном из режимов.

Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ усиления и частотной демодуляции высокочастотного сигнала, основанный на использовании энергии источника постоянного напряжения, организации цепи прямой передачи (ЦПП) и цепи внешней обратной связи (ОС), выполнении условий усиления путем согласования с заданным допуском ОС и ЦПП с остальной частью усилителя. Если средняя частота входного ЧМС совпадает со средней частотой левого склона АЧХ, а выходом остальной части усилителя является фильтр нижних частот и низкочастотная нагрузка, то одновременно с усилением произойдет преобразование ЧМС в АЧМС, амплитуда которого будет изменяться по закону изменения частоты входного ЧМС, а также амплитудная демодуляция АЧМС с формированием на низкочастотной нагрузке НЧ сигнала, амплитуда которого изменяется по закону изменения частоты входного ЧМС. [Гоноровский И.С. Радиотехнические цепи и сигналы. - М: Советское радио, 1977, с. 190-193, 290-293, 311-316].

Наиболее близким по технической сущности и достигаемому результату (прототипом) является устройство усиления и частотной демодуляции высокочастотного сигнала, состоящее из источника постоянного напряжения, устанавливающего рабочую точку на середине квазилинейного участка проходной вольт-амперной характеристики транзистора, цепи прямой передачи в виде первого четырехполюсника для согласования выходного электрода транзистора и нагрузки, входной цепи в виде параллельного колебательного контура, RC-цепи внешней положительной обратной связи (в общем виде - второго четырехполюсника для согласования управляющего электрода транзистора и нагрузки) между нагрузкой и управляющим электродом транзистора, выходной цепи в виде ФНЧ, разделительной емкости и низкочастотной нагрузки, при этом параметры контура, цепи прямой передачи, цепи обратной связи и транзистора выбраны из условия совпадения средней частоты левого склона АЧХ всего устройства и средней частоты входного ЧМС и одновременного усиления амплитуды ЧМС [Гоноровский И.С. Радиотехнические цепи и сигналы. - М: Советское радио, 1977, с. 190-193, 290-293, 311-316].

Принцип действия этого устройства состоит в следующем. При включении источника постоянного напряжения (тока) рабочая точка нелинейного элемента устанавливается на середине квазилинейного участка его проходной вольт-амперной характеристики. Благодаря наличию внешней обратной связи, согласования с помощью реактивных четырехполюсников выходного электрода с нагрузкой и нагрузки с управляющим электродом, потери во всей цепи компенсируются с определенным допуском, необходимым для устранения возможности возбуждения устройства. Благодаря этому, входной ЧМС со средней частотой, равной средней частоте левого склона колебательного контура, усиливается до уровня, при котором амплитуда выходит за пределы квазилинейного участка вольт-амперной характеристики, а входной ЧМС преобразуется в АЧМС. Нелинейный элемент расщепляет (разрушает) спектр АЧМС на составляющие, ФНЧ выделяет НЧ составляющую, а остальные подавляет, разделительная емкость устраняет постоянную составляющую, НЧ составляющая, амплитуда которой изменяется по закону изменения частоты входного ЧМС, поступает на низкочастотную нагрузку. Происходит демодуляция ЧМС. Недостатком способа и устройства является простое совмещение функций усиления и частотной демодуляции. Общим недостатком всех известных способов и устройств является то, что отсутствуют технические решения, способствующие обеспечению режима усиления и режима частотной демодуляции с помощью одного радиотехнического устройства. Если в режиме частотной демодуляции достигнут минимум нелинейных и частотных искажений, то в режиме усиления эти искажения будут максимальными, и наоборот, если в режиме усиления достигнут минимум нелинейных и частотных искажений, то в режиме частотной демодуляции эти искажения будут максимальными. Особенно остро возникает этот вопрос при проектировании устройств усиления и частотной демодуляции в диапазонах ВЧ и УВЧ, на которых, кроме того, обязательно нужно учитывать реактивные составляющие параметров нелинейных элементов. В настоящее время классическая теория радиотехнических цепей это не учитывает. Кроме того, частотную демодуляцию и усиление можно обеспечить при наличии резистивных четырехполюсников, параметры которых не зависят от частоты в достаточно большом диапазоне частот, что при определенных условиях способствует увеличению квазилинейного участка частотной демодуляционной характеристики, обеспечению заданного коэффициента усиления и динамического диапазона. Это обеспечивает минимум нелинейных и частотных искажений. Основой для данного изобретения является определение указанных условий.

Техническим результатом изобретения является усиление и частотная демодуляция высокочастотного сигнала с помощью устройства с увеличенным динамическим диапазоном и квазилинейным участком частотной демодуляционной характеристики благодаря согласованию с помощью резистивного четырехполюсника по критерию формирования квазилинейного участка левого склона АЧХ, совпадающего с диапазоном изменения частоты входного ЧМС. Возможность использования различных вариантов включения трехполюсного нелинейного элемента относительно резистивного четырехполюсника и различных видов обратной связи расширяет возможности физической реализуемости этого результата.

1. Указанный результат достигается тем, что в известном способе усиления и демодуляции частотно-модулированных сигналов, основанном на использовании энергии источника постоянного напряжения, взаимодействии частотно-модулированного сигнала с устройством, которое выполняют из цепи прямой передачи в виде трехполюсного нелинейного элемента, четырехполюсника, цепи внешней обратной связи, фильтра нижних частот, разделительной емкости и низкочастотной нагрузки, выполнении условий согласования цепи прямой передачи с цепью внешней обратной связи, условий согласования цепи внешней обратной связи с управляющим электродом трехполюсного нелинейного элемента, условий согласования цепи прямой передачи и цепи внешней обратной связи с остальной частью устройства с заданным допуском, преобразовании частотно-модулированного сигнала в амплитудно-частотно-модулированный сигнал на левом склоне амплитудно-частотной характеристики, расщеплении спектра амплитудно-частотно-модулированного сигнала на низкочастотные и высокочастотные составляющие с помощью трехполюсного нелинейного элемента, выделении низкочастотной составляющей с помощью фильтра нижних частот, устранении постоянной составляющей с помощью разделительной емкости и получении на низкочастотной нагрузке низкочастотного сигнала, амплитуда которого изменяется по закону изменения частоты частотно-модулированного сигнала, дополнительно четырехполюсник выполняют резистивным, в качестве цепи внешней обратной связи используют произвольный комплексный четырехполюсник, параллельно подключенный к трехполюсному нелинейному элементу, трехполюсный нелинейный элемент и цепь обратной связи как единый узел каскадно включают между источником частотно-модулированного сигнала с комплексным сопротивлением и входом резистивного четырехполюсника, между выходом резистивного четырехполюсника и фильтром нижних частот включают высокочастотную нагрузку в виде двухполюсника с комплексным сопротивлением, значение модуля mр передаточной функции и резонансную частоту устройства выбирают из условия формирования заданной крутизны квазилинейного участка левого склона амплитудно-частотной характеристики устройства в заданной полосе частот, совпадающей с диапазоном изменения частоты частотно-модулированного сигнала, условия согласования по критерию одновременного обеспечения усиления и частотной демодуляции выполняют путем реализации заданного значения mр на резонансной частоте за счет выбора значений параметров резистивного четырехполюсника в соответствии со следующими математическими выражениями:

где

- отношения соответствующих элементов классической матрицы передачи резистивного четырехполюсника a, b, c, d; r0, rн, x0, xн - заданные значения действительных и мнимых составляющих сопротивлений источника входного частотно-модулированного сигнала и высокочастотной нагрузки на резонансной частоте; g11, b11, g12, b12, g21, b21 g22, b22 - заданные суммарные значения действительных и мнимых составляющих элементов матрицы проводимостей трехполюсного нелинейного элемента на резонансной частоте и соответствующих значений действительных и мнимых составляющих элементов матрицы проводимостей цепи внешней обратной связи на резонансной частоте.

2. Указанный результат достигается тем, что в известном устройстве усиления и демодуляции частотно-модулированных сигналов, выполненном из источника постоянного напряжения, цепи прямой передачи в виде трехполюсного нелинейного элемента, четырехполюсника, цепи внешней обратной связи, фильтра нижних частот, разделительной емкости и низкочастотной нагрузки, дополнительно четырехполюсник выполнен резистивным, в качестве цепи внешней обратной связи использован произвольный комплексный четырехполюсник, параллельно подключенный к трехполюсному нелинейному элементу, трехполюсный нелинейный элемент и цепь обратной связи как единый узел каскадно включены между источником частотно-модулированного сигнала с комплексным сопротивлением и входом резистивного четырехполюсника, между выходом резистивного четырехполюсника и фильтром нижних частот включена высокочастотная нагрузка в виде двухполюсника с комплексным сопротивлением, резистивный четырехполюсник выполнен в виде обратного Г-образного соединения двух резистивных двухполюсников с сопротивлениями r1, r2, значения которых выбраны из условия согласования по критерию одновременного обеспечения усиления и частотной демодуляции в соответствии со следующими математическими выражениями:

где

r0, rн, х0, хн - заданные значения действительных и мнимых составляющих сопротивлений источника входного частотно-модулированного сигнала и высокочастотной нагрузки на резонансной частоте; g11, b11, g12, b12, g21, b21, g22, b22 - заданные суммарные значения действительных и мнимых составляющих элементов матрицы проводимостей трехполюсного нелинейного элемента на резонансной частоте и соответствующих значений действительных и мнимых составляющих элементов матрицы проводимостей цепи внешней обратной связи на резонансной частоте;

значение резонансной частоты и величина заданного и реализуемого модуля mр передаточной функции на резонансной частоте выбраны из условия формирования заданной крутизны квазилинейного участка левого склона амплитудно-частотной характеристики устройства в заданной полосе частот, совпадающей с диапазоном изменения частоты входного частотно-модулированного сигнала.

На фиг. 1 показана схема устройства усиления и демодуляции частотно-модулированных сигналов (прототип), реализующего способ-прототип.

На фиг. 2 показана структурная схема предлагаемого устройства по п. 2., реализующая предлагаемый способ усиления и демодуляции частотно-модулированных сигналов по п. 1.

На фиг. 3. приведена схема согласующего резистивного четырехполюсника, входящего в состав предлагаемого устройства (фиг. 2).

Устройство-прототип (Фиг. 1), реализующее способ-прототип, содержит цепь прямой передачи в виде трехполюсного нелинейного элемента VT-1, подключенного к источнику постоянного напряжения Е0-2, согласующего устройства СУ-3 в виде реактивного четырехполюсника. К цепи прямой передачи (ЦПП) подключена цепь обратной связи ОС-4. К выходу узла из ЦПП и ОС как единого целого подключены ФНЧ-5, разделительная емкость СP-6 и низкочастотная нагрузка Rн-7. Между источником ЧМС с сопротивлением z0-8 и входом ЦПП и ОС параллельно включен параллельный колебательный контур КК-9 на элементах L, R, C.

Принцип действия устройства усиления и демодуляции ЧМС (прототипа), реализующего способ-прототип, состоит в следующем.

При включении источника постоянного напряжения (тока) Е0-2 рабочая точка нелинейного элемента VT-1 устанавливается на середине квазилинейного участка его проходной вольт-амперной характеристики. Благодаря согласованию с помощью СУ-3 выходного электрода с ОС-4 и ОС-4 с управляющим электродом, в цепи возникает отрицательное сопротивление и потери во всей цепи компенсируются с определенным допуском, необходимым для устранения возможности возбуждения устройства. Благодаря этому, входной ЧМС со средней частотой, равной средней частоте левого склона КК-9, усиливается до уровня, при котором амплитуда выходит за пределы квазилинейного участка вольт-амперной характеристики, а входной ЧМС преобразуется в АЧМС. Нелинейный элемент VT-1 расщепляет (разрушает) спектр АЧМС на составляющие, ФНЧ-5 выделяет НЧ составляющую, а остальные подавляет, разделительная емкость СP-6 устраняет постоянную составляющую. НЧ составляющая, амплитуда которой изменяется по закону изменения частоты входного ЧМС, поступает на низкочастотную нагрузку Rн-7. Происходит демодуляция ЧМС.

Недостатки способа-прототипа и устройства его реализации описаны выше. Предлагаемое устройство по п. 2 (фиг. 2), реализующее предлагаемый способ по п. 1, содержит трехполюсный нелинейный элемент VT-1 с известными элементами матрицы проводимостей нелинейного элемента (VT) y 11 i V T + g 11 i V T + j b 11 i V T , y 12 i V T + g 12 i V T + j b 12 i V T , y 21 i V T + g 21 i V T + j b 21 i V T , y 22 i V T + g 22 i V T + j b 22 i V T на заданных частотах, подключенный к источнику постоянного напряжения Е0-2 и параллельно соединенный по высокой частоте с цепью внешней ОС (входы соединены параллельно и выходы - параллельно), выполненной в виде произвольного четырехполюсника - 10, сформированного в общем случае на двухполюсниках с комплексными сопротивлениями. Источник входного ЧМС с сопротивлением z0i=r0i+jx0i-8 на заданных частотах подключен к входу узла из нелинейного элемента VT-1 и четырехполюсник 10. К выходу этого узла подключен согласующий резистивный четырехполюсник СРЧ-11, между выходом СРЧ-11 и ФНЧ-5 параллельно включена высокочастотная нагрузка zн-12 с заданными сопротивлениями zнi=rнi+jxнi на заданных частотах. Произвольный четырехполюсник10 тоже характеризуется известными значениями элементов матрицы проводимостей y 11 i O C + g 11 i O C + j b 11 i O C , y 12 i O C + g 12 i O C + j b 12 i O C , y 21 i O C + g 21 i O C + j b 21 i O C , y 22 i O C + g 22 i O C + j b 22 i O C на заданных частотах (i=1,2.. - номер частоты). Четырехполюсник 11 может быть выполнен в виде произвольного соединения произвольного количества резистивных двухполюсников. В данном изобретении этот четырехполюсник выполнен в виде обратного Г-образного соединения двух двухполюсников (фиг. 3). Синтез усилителя и частотного демодулятора (выбор оптимальных значений сопротивлений первого r1-13 и второго r2-14 двухполюсников СРЧ-11) осуществлен по критерию обеспечения заданной крутизны квазилинейного участка левого склона АЧХ в заданной полосе частот, совпадающей с диапазоном изменения частоты входного ЧМС, за счет реализации заданного модуля передаточной функции (коэффициента усиления) на резонансной частоте. В результате реализуется увеличенный квазилинейный участок частотной демодуляционной характеристики и динамический диапазон.

Предлагаемое устройство функционирует следующим образом. При включении источника постоянного напряжения (тока) Е0-2 рабочая точка нелинейного элемента VT-1 устанавливается на начальном участке его проходной вольт-амперной характеристики (режим работы с отсечкой, позволяющий разрушать спектр сигнала). Благодаря согласованию ЦПП и ОС как единого целого с помощью СРЧ-11 с остальной частью устройства в цепи возникает отрицательное сопротивление и потери во всей цепи компенсируются с определенным допуском, необходимым для усиления амплитуды и устранения возможности возбуждения устройства, а также формируется левый склон АЧХ с заданной крутизной в заданной полосе частот. Происходит увеличение квазилинейного участка левого склона АЧХ. Благодаря этому, входной ЧМС со средней частотой, равной средней частоте левого склона АЧХ, усиливается до уровня, при котором амплитуда выходит за пределы квазилинейного участка левого склона АЧХ, а входной ЧМС преобразуется в АЧМС. Происходит увеличение амплитуды АЧМС на квазилинейном участке левого склона АЧХ, что равносильно увеличению динамического диапазона. Нелинейный элемент VT-1 расщепляет (разрушает) спектр АЧМС на составляющие, ФНЧ-5 выделяет НЧ составляющую, а остальные подавляет, разделительная емкость СР-6 устраняет постоянную составляющую, НЧ составляющая, амплитуда которой изменяется по закону изменения частоты входного ЧМС, поступает на низкочастотную нагрузку Rн-7. Происходит демодуляция ЧМС, частотные и нелинейные искажения уменьшаются. Коэффициент детектирования увеличивается в число раз, равное коэффициенту усиления - модулю передаточной функции высокочастотной части (до фильтра нижних частот) предлагаемого устройства.

Докажем возможность реализации указанных свойств.

Введем обозначения зависимостей сопротивления источника сигнала z01=r0+jx0, нагрузки zн2=rн+jxн и зависимостей элементов матрицы проводимостей нелинейного элемента (VT) и цепи внешней обратной связи (ОС) от частоты. При параллельном соединении четырехполюсников их матрицы проводимостей складываются. Суммарные зависимости элементов матриц проводимостей VT и цепи ОС от частоты: y11=g11+jb11, y12=g12+jb12, y21=g21+jb21, y22=g22+jb22. Параметры нелинейного элемента зависят, кроме того, от амплитуды низкочастотного управляющего сигнала. Для простоты аргументы (амплитуда и частота) опущены. Требуется определить значения сопротивлений r1, r2 (аппроксимирующие функции) первого и второго резистивных согласующих двухполюсников СРЧ-12, оптимальные по критерию обеспечения условий формирования левого склона АЧХ и усиления амплитуды ЧМС в режиме частотной демодуляции и усиления. VT и цепь ОС описываются матрицей проводимостей и матрицей передачи:

где Резистивный четырехполюсник (РЧ) характеризуется матрицей передачи:

где a, b, c, d - элементы классической матрицы передачи.

Общая нормированная классическая матрица передачи высокочастотной части усилителя и частотного демодулятора получается путем перемножения матриц передачи (1) и (2) (перемножение матриц производится в порядке следования соответствующих четырехполюсников) с учетом условий нормировки:

Используя известную связь элементов матрицы рассеяния с элементами классической матрицы передачи (Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. - М.: Связь, 1971, с. 34-36) и матрицу передачи (3), с учетом условий нормировки получим выражение для коэффициента передачи высокочастотной части усилителя и частотного демодулятора в режиме усиления:

где

Можно показать, что коэффициент передачи (4) связан с физически реализуемой передаточной функцией простым соотношением Поэтому

Передаточная функция (5) приводится к известному виду для коэффициента усиления усилителя с обратной связью:

где - коэффициенты усиления цепи прямой передачи и цепи обратной связи.

Пусть требуется обеспечить требуемые зависимости модуля m (АЧХ) и фазы φ (ФЧХ) передаточной функции усилителя и частотного модулятора от частоты:

Подставим (5) или (6) в (7). После разделения между собой мнимых и действительных частей получим систему двух уравнений, эквивалентных (7):

где

Решение (8) имеет вид оптимальных по критерию (7) взаимосвязей между элементами классической матрицы передачи СРЧ:

где

Оптимальные характеристики (9), обеспечивающие заданную крутизну и линейность левого склона АЧХ во всем диапазоне частот, реализовать невозможно. Здесь предлагается реализация квазиоптимальных характеристик, приблизительно совпадающих с оптимальными характеристиками в определенной полосе частот. Известно, что максимум АЧХ наблюдается на частоте, на которой фаза передаточной функции равна нулю. Это частота называется резонансной. Частота входного ЧМС изменяется относительно средней частоты в сторону уменьшения и в сторону увеличения на величину, равную девиации частоты. Назовем максимальную величину частоты ЧМС верхней частотой. Таким образом, если резонансная частота устройства расположена выше верхней частоты ЧМС, то изменение частоты ЧМС будет происходить на левом склоне АЧХ предлагаемого устройства, в результате чего произойдет преобразование входного ЧМС в АЧМС. Усиление амплитуды входного ЧМС в предлагаемом устройстве носит регенеративный характер - чем больше коэффициент усиления на резонансной частоте, тем уже рабочая полоса частот, и наоборот. Поэтому изменяя задаваемую и реализуемую в силу (9) величину модуля передаточной функции mр, равную значению m на резонансной частоте, мы можем регулировать величину квазилинейного участка левого склона АЧХ для обеспечения его совпадения с диапазоном изменения частоты входного ЧМС. Положим в (9) φ=0. Получим

где Остальные коэффициенты имеют тот же вид, что и в (9).

Реализация квазиоптимальных характеристик (10) осуществляется следующим образом. Выбираем типовую схему резистивного четырехполюсника с известной классической матрицей передачи. Находим отношения элементов классической матрицы передачи. Определенные таким образом коэффициенты а подставляем в (10) и решаем полученную систему уравнений относительно двух выбранных параметров выбранной схемы СРЧ. Если в СРЧ-11 количество двухполюсников больше двух, то сопротивления остальных двухполюсников могут быть выбраны произвольно или исходя из каких-либо других физических соображений. В соответствии с этим алгоритмом получены выражения для определения оптимальных по критерию (10) сопротивлений двух двухполюсников СРЧ в виде обратного Г-образного звена (фиг.3):

где

Предлагаемые технические решения имеют изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что заявленная последовательность операций (использование в качестве цепи внешней обратной связи произвольного четырехполюсника, параллельно подключенного к трехполюсному нелинейному элементу, включение трехполюсного нелинейного элемента и цепи обратной связи как единого узла между источником сигнала и входом резистивного четырехполюсника, включение высокочастотной нагрузки между выходом резистивного четырехполюсника и низкочастотной частью, выполненной из ФНЧ, разделительной емкости и низкочастотной нагрузки (фиг. 2), выполнение согласующего резистивного четырехполюсника в виде обратного Г-образного соединения двух двухполюсников, выбор значений сопротивлений первого и второго резистивных двухполюсников r1 и r2 (фиг. 3)) обеспечивает одновременно усиление, преобразование ЧМС в АЧМС на левом склоне АЧХ, демодуляцию АЧМС, что эквивалентно частотной демодуляции.

Предлагаемые технические решения практически применимы, так как для их реализации могут быть использованы серийно выпускаемые промышленностью трехполюсные нелинейные элементы (транзисторы или лампы), резистивные элементы, сформированные в обратную Г-образную схему резистивного четырехполюсника (фиг. 3). Значения сопротивлений резистивных элементов могут быть однозначно определены с помощью математических выражений, приведенных в формуле изобретения.

Технико-экономическая эффективность предложенного устройства заключается в обеспечении усиления и частотной демодуляции высокочастотного сигнала за счет выбора схемы и значений сопротивлений резистивных элементов согласующего резистивного четырехполюсника по критерию формирования левого склона АЧХ с заданными крутизной и коэффициентом усиления, что унифицирует устройство, увеличивает квазилинейный участок частотной демодуляционной характеристики и динамический диапазон в режиме усиления и частотной демодуляции.

Похожие патенты RU2599964C1

название год авторы номер документа
СПОСОБ УСИЛЕНИЯ И ДЕМОДУЛЯЦИИ ЧАСТОТНО-МОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ 2015
  • Головков Александр Афанасьевич
  • Гаврюшин Владимир Николаевич
  • Кирюшкин Владислав Викторович
  • Федоров Александр Викторович
RU2599965C1
СПОСОБ УСИЛЕНИЯ И ДЕМОДУЛЯЦИИ ЧАСТОТНО-МОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ 2014
  • Головков Александр Афанасьевич
  • Гаврюшин Владимир Николаевич
  • Кирюшкин Владислав Викторович
  • Куценко Дмитрий Сергеевич
RU2591014C2
СПОСОБ УСИЛЕНИЯ И ДЕМОДУЛЯЦИИ ЧАСТОТНО-МОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ 2014
  • Головков Александр Афанасьевич
  • Гаврюшин Владимир Николаевич
  • Кирюшкин Владислав Викторович
  • Куценко Дмитрий Сергеевич
RU2552175C1
СПОСОБ УСИЛЕНИЯ И ДЕМОДУЛЯЦИИ ЧАСТОТНО-МОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ 2015
  • Головков Александр Афанасьевич
  • Гаврюшин Владимир Николаевич
  • Кирюшкин Владислав Викторович
  • Федоров Александр Викторович
RU2598797C1
СПОСОБ УСИЛЕНИЯ И ДЕМОДУЛЯЦИИ ЧАСТОТНО-МОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ 2014
  • Головков Александр Афанасьевич
  • Гаврюшин Владимир Николаевич
  • Кирюшкин Владислав Викторович
  • Федоров Александр Викторович
RU2577913C2
СПОСОБ УСИЛЕНИЯ И ДЕМОДУЛЯЦИИ ЧАСТОТНО-МОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ 2015
  • Головков Александр Афанасьевич
  • Гаврюшин Владимир Николаевич
  • Кирюшкин Владислав Викторович
  • Хроколов Владимир Владимирович
RU2599347C1
СПОСОБ УСИЛЕНИЯ И ДЕМОДУЛЯЦИИ ЧАСТОТНО-МОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ 2015
  • Головков Александр Афанасьевич
  • Гаврюшин Владимир Николаевич
  • Кирюшкин Владислав Викторович
  • Куценко Дмитрий Сергеевич
RU2605675C2
СПОСОБ УСИЛЕНИЯ И ДЕМОДУЛЯЦИИ ЧАСТОТНО-МОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ 2015
  • Головков Александр Афанасьевич
  • Гаврюшин Владимир Николаевич
  • Кирюшкин Владислав Викторович
  • Федоров Александр Викторович
RU2598792C1
СПОСОБ УСИЛЕНИЯ И ДЕМОДУЛЯЦИИ ЧАСТОТНО-МОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ 2014
  • Головков Александр Афанасьевич
  • Гаврюшин Владимир Николаевич
  • Кирюшкин Владислав Викторович
  • Еропов Сергей Ильич
RU2568387C1
СПОСОБ УСИЛЕНИЯ И ДЕМОДУЛЯЦИИ ЧАСТОТНО-МОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ 2014
  • Головков Александр Афанасьевич
  • Гаврюшин Владимир Николаевич
  • Кирюшкин Владислав Викторович
  • Еропов Сергей Ильич
RU2568389C1

Иллюстрации к изобретению RU 2 599 964 C1

Реферат патента 2016 года СПОСОБ УСИЛЕНИЯ И ДЕМОДУЛЯЦИИ ЧАСТОТНО-МОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ

Изобретение относится к области радиосвязи. Технический результат изобретения заключается в обеспечении усиления и частотной демодуляции высокочастотного сигнала за счет выбора схемы и значений сопротивлений резистивных элементов. Способ усиления и демодуляции частотно-модулированных сигналов отличается тем, что четырехполюсник выполняют резистивным, в качестве цепи внешней обратной связи используют произвольный комплексный четырехполюсник, параллельно подключенный к трехполюсному нелинейному элементу, трехполюсный нелинейный элемент и цепь обратной связи как единый узел каскадно включают между источником частотно-модулированного сигнала с комплексным сопротивлением и входом резистивного четырехполюсника, между выходом резистивного четырехполюсника и фильтром нижних частот включают высокочастотную нагрузку в виде двухполюсника с комплексным сопротивлением, значение модуля mр передаточной функции и резонансную частоту устройства выбирают из условия формирования заданной крутизны квазилинейного участка левого склона амплитудно-частотной характеристики устройства в заданной полосе частот. 2 н.п. ф-лы, 3 ил.

Формула изобретения RU 2 599 964 C1

1. Способ усиления и демодуляции частотно-модулированных сигналов, основанный на использовании энергии источника постоянного напряжения, взаимодействии частотно-модулированного сигнала с устройством, которое выполняют из цепи прямой передачи в виде трехполюсного нелинейного элемента, четырехполюсника, цепи внешней обратной связи, фильтра нижних частот, разделительной емкости и низкочастотной нагрузки, выполнении условий согласования цепи прямой передачи с цепью внешней обратной связи, условий согласования цепи внешней обратной связи с управляющим электродом трехполюсного нелинейного элемента, условий согласования цепи прямой передачи и цепи внешней обратной связи с остальной частью устройства с заданным допуском, преобразовании частотно-модулированного сигнала в амплитудно-частотно-модулированный сигнал на левом склоне амплитудно-частотной характеристики, расщеплении спектра амплитудно-частотно-модулированного сигнала на низкочастотные и высокочастотные составляющие с помощью трехполюсного нелинейного элемента, выделении низкочастотной составляющей с помощью фильтра нижних частот, устранении постоянной составляющей с помощью разделительной емкости и получении на низкочастотной нагрузке низкочастотного сигнала, амплитуда которого изменяется по закону изменения частоты частотно-модулированного сигнала, отличающийся тем, что четырехполюсник выполняют резистивным, в качестве цепи внешней обратной связи используют произвольный комплексный четырехполюсник, параллельно подключенный к трехполюсному нелинейному элементу, трехполюсный нелинейный элемент и цепь обратной связи как единый узел каскадно включают между источником частотно-модулированного сигнала с комплексным сопротивлением и входом резистивного четырехполюсника, между выходом резистивного четырехполюсника и фильтром нижних частот включают высокочастотную нагрузку в виде двухполюсника с комплексным сопротивлением, значение модуля mp передаточной функции и резонансную частоту устройства выбирают из условия формирования заданной крутизны квазилинейного участка левого склона амплитудно-частотной характеристики устройства в заданной полосе частот, совпадающей с диапазоном изменения частоты частотно-модулированного сигнала, условия согласования по критерию одновременного обеспечения усиления и частотной демодуляции выполняют путем реализации заданного значения mp на резонансной частоте за счет выбора значений параметров резистивного четырехполюсника в соответствии со следующими математическими выражениями:

где
A1=g110b21-b110g21; B1=g110g21+b110b21;
A2=g220g21+b220b21; B2=g21b220-g220b21; g220=b11x0-1-g11r0; b220=-(g11x0+b11r0);
g110=r0A3+x0B3-g22; b110=x0A3-b22-r0B3; A3=b11b22-b12b21-g11g22+g12g21;
B3=b11g22-b12g21-g12b21+b22g11; , ; - отношения соответствующих элементов классической матрицы передачи резистивного четырехполюсника a, b, c, d; r0, rн, х0, хн - заданные значения действительных и мнимых составляющих сопротивлений источника входного частотно-модулированного сигнала и высокочастотной нагрузки на резонансной частоте; g11,b11, g12,b12, g21,b21, g22,b22 - заданные суммарные значения действительных и мнимых составляющих элементов матрицы проводимостей трехполюсного нелинейного элемента на резонансной частоте и соответствующих значений действительных и мнимых составляющих элементов матрицы проводимостей цепи внешней обратной связи на резонансной частоте.

2. Устройство усиления и демодуляции частотно-модулированных сигналов, выполненное из источника постоянного напряжения, цепи прямой передачи в виде трехполюсного нелинейного элемента, четырехполюсника, цепи внешней обратной связи, фильтра нижних частот, разделительной емкости и низкочастотной нагрузки, отличающееся тем, что четырехполюсник выполнен резистивным, в качестве цепи внешней обратной связи использован произвольный комплексный четырехполюсник, параллельно подключенный к трехполюсному нелинейному элементу, трехполюсный нелинейный элемент и цепь обратной связи как единый узел каскадно включены между источником частотно-модулированного сигнала с комплексным сопротивлением и входом резистивного четырехполюсника, между выходом резистивного четырехполюсника и фильтром нижних частот включена высокочастотная нагрузка в виде двухполюсника с комплексным сопротивлением, резистивный четырехполюсник выполнен в виде обратного Г-образного соединения двух резистивных двухполюсников с сопротивлениями r1,r2, значения которых выбраны из условия согласования по критерию одновременного обеспечения усиления и частотной демодуляции в соответствии со следующими математическими выражениями:

где

A1=g110b21-b110g21; B1=g110g21+b110b21;
A2=g220g21+b220b21; B2=g21b220-g220b21; g220=b11x0-1-g11r0; b220=-(g11x0+b11r0);
g110=r0A3+x0B3-g22; b110=x0A3-b22-r0B3; A3=b11b22-b12b21-g11g22+g12g21;
B3=b11g22-b12g21-g12b21+b22g11; r0, rн, х0, хн - заданные значения действительных и мнимых составляющих сопротивлений источника входного частотно-модулированного сигнала и высокочастотной нагрузки на резонансной частоте; g11,b11, g12,b12, g21,b21, g22,b22 - заданные суммарные значения действительных и мнимых составляющих элементов матрицы проводимостей трехполюсного нелинейного элемента на резонансной частоте и соответствующих значений действительных и мнимых составляющих элементов матрицы проводимостей цепи внешней обратной связи на резонансной частоте;
значение резонансной частоты и величина заданного и реализуемого модуля mp передаточной функции на резонансной частоте выбраны из условия формирования заданной крутизны квазилинейного участка левого склона амплитудно-частотной характеристики устройства в заданной полосе частот, совпадающей с диапазоном изменения частоты входного частотно-модулированного сигнала.

Документы, цитированные в отчете о поиске Патент 2016 года RU2599964C1

ГОНОРОВСКИЙ И.С
РАДИОТЕХНИЧЕСКИЕ ЦЕПИ И СИГНАЛЫ
- М: "СОВЕТСКОЕ РАДИО", 1977
Ускоритель для воздушных тормозов при экстренном торможении 1921
  • Казанцев Ф.П.
SU190A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем 1924
  • Волынский С.В.
SU2012A1

RU 2 599 964 C1

Авторы

Головков Александр Афанасьевич

Гаврюшин Владимир Николаевич

Кирюшкин Владислав Викторович

Нугаев Ибрагим Нугаевич

Даты

2016-10-20Публикация

2015-03-23Подача