ВАКУУМНАЯ НЕЙТРОННАЯ ТРУБКА Российский патент 2016 года по МПК G21G4/00 

Описание патента на изобретение RU2603013C1

Изобретение относится к области прикладной физики и может быть использовано при разработке генераторов нейтронов на вакуумных нейтронных трубках для активационного анализа сплавов, соединений и электронного лома.

Специфика анализа перечисленных материалов состоит в большом разнообразии состава и форм анализируемых объектов, а также широкого диапазона содержания металлов, в том числе и благородных. Это приводит к необходимости использовать различные типы нейтронов - 14 Мэв и 2,5 Мэв. Применение различных типов нейтронов позволяет получать независимые результаты определения благородных металлов в одних и тех же пробах, что дает возможность контролировать правильность методик, повышает достоверность и точность определения содержания металлов.

Известна вакуумная нейтронная трубка, содержащая корпус, размещенные в нем управляемый трехэлектродный источник ионов, катод и анод которого насыщены изотопами водорода, и мишень. Мишень и источник ионов расположены в противоположных торцах корпуса трубки, навстречу друг другу [Г.И. Кирьянов. Генераторы быстрых нейтронов, М.: Энергоатомиздат, 1990, с. 125].

Недостатком трубки является малый ресурс работы.

Наиболее близким техническим решением, выбранным за прототип, является вакуумная нейтронная трубка, содержащая размещенные в герметичном запаянном стеклянном или керамическом корпусе управляемый 3-х электродный искровой источник, который состоит из кольцевого анода (А), катода (К) и поджигающего электрода (П). Мишень (М) выполнена в виде диска из молибдена с напыленным слоем титана. Рабочие газы постоянно окклюдированы в элементах нейтронной трубки: в мишени - тритий или дейтерий, а аноде и катоде ионного источника - дейтерий (Сборник материалов, Межотраслевой научно-технической конференции «Портативные генераторы нейтронов и технологии на их основе», Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова, 2004, с. 72).

Недостатком прототипа являются ограниченные функциональные возможности, т.к. трубка генерирует нейтроны только одного типа: либо 2,5 Мэв, либо 14 Мэв и имеет ограниченный ресурс работы.

Техническим результатом изобретения является расширение функциональных и эксплуатационных возможности вакуумной нейтронной трубки.

Технический результат достигается тем, что вакуумная нейтронная трубка, содержащая герметично запаянный изоляционный корпус, в котором размещены управляемый трехэлектродный источник ионов, анод и катод которого насыщены изотопом водорода, мишень, газопоглотитель, оснащена дополнительным идентичным управляемым трехэлектродным источником ионов и газопоглотителем, мишенный электрод содержит две симметричные мишени, насыщенные одним или разными изотопами водорода, и расположен посередине корпуса, на торцах которого напротив мишеней размещены управляемые трехэлектродные источники ионов.

Сущность изобретения поясняется на чертеже, где: 1 - корпус нейтронной трубки, выполненный из изоляционного материала, 2 - катод нейтронной трубки, 3 - поджигающий электрод трехэлектродного источника ионов, 4 - анод трехэлектродного источника ионов, 5 - газопоглотители, 6 - мишенный электрод, расположенный посередине корпуса нейтронной трубки, 7 - накладная мишень, 8 - накладная мишень.

Нейтронная трубка работает следующим образом.

При подаче на электроды 2 и 3 трехэлектродного источника ионов высоковольтного импульса (5-15 кВ) между ними происходит пробой. Область между анодом 4 и катодом 2 трехэлектродного источника ионов ионизируется, вследствие чего резко снижается электрическая прочность промежутка анод 4 - катод 2, что приводит к загоранию дугового разряда. В результате рабочий газ (дейтерий) десорбируется из анода 4 и катода 2. Образовавшаяся плазма движется в выходному отверстию анодного электрода 4 и выходит в ускорительный промежуток катод 2 - мишенный электрод 6 трубки, в котором ионы дейтериевой плазмы ускоряются импульсом напряжения 120-150 кВ. При бомбардировке мишени 7, насыщенной дейтерием, в результате ядерной реакции Д(d, n)Не3 образуются нейтроны с энергией 2,5 Мэв, при бомбардировке мишени 8, насыщенной тритием, в результате ядерной реакции T(d, n)Не4 образуются нейтроны с энергией 14 МэВ. Для обеспечения необходимого вакуума в объеме корпуса трубки 1 служат газопоглотители 5.

Таким образом, по сравнению с прототипом, вакуумная нейтронная трубка позволяет расширить функциональные возможности, т.к. она может генерировать нейтроны различных энергий - 14 Мэв и 2,5 Мэв по выбору пользователя. Кроме того, можно задать режим работы вакуумной нейтронной трубки с одновременной и последовательной работой ионных источников.

При насыщении мишеней одним типом изотопа водорода может быть увеличен поток нейтронов при одновременной работе ионных источников, по крайней мере, в два раза. При последовательной работе ионных источников увеличивается ресурс работы вакуумной нейтронной трубки по сравнению с прототипом.

Похожие патенты RU2603013C1

название год авторы номер документа
Импульсный нейтронный генератор 2015
  • Бобылев Владимир Тимофеевич
  • Брагин Сергей Иванович
  • Кузнецов Юрий Павлович
RU2614240C1
ИСТОЧНИК ИОНОВ ДЛЯ НЕЙТРОННОЙ ТРУБКИ 2015
  • Щитов Николай Николаевич
  • Румянцев Георгий Сергеевич
  • Карпов Дмитрий Алексеевич
  • Литуновский Владимир Николаевич
RU2588263C1
УНИВЕРСАЛЬНАЯ НЕЙТРОННАЯ ТРУБКА С ЭЛЕКТРОТЕРМИЧЕСКИМИ ИНЖЕКТОРАМИ РАБОЧЕГО ГАЗА 2015
  • Карпов Дмитрий Алексеевич
  • Литуновский Владимир Николаевич
RU2601961C1
НЕЙТРОННАЯ ТРУБКА 2004
  • Иосселиани Дмитрий Дмитриевич
RU2287197C2
ВАКУУМНАЯ НЕЙТРОННАЯ ТРУБКА 2006
  • Плешакова Регина Павловна
RU2316835C1
ИМПУЛЬСНАЯ НЕЙТРОННАЯ ТРУБКА 2000
  • Плешакова Р.П.
RU2198441C2
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОДОВ ВАКУУМНОЙ НЕЙТРОННОЙ ТРУБКИ 2015
  • Карпов Дмитрий Алексеевич
  • Литуновский Владимир Николаевич
  • Румянцев Георгий Сергеевич
  • Щитов Николай Николаевич
RU2601293C1
ВАКУУМНАЯ НЕЙТРОННАЯ ТРУБКА 2002
  • Щитов Н.Н.
  • Анискин Д.Ю.
  • Сотская Е.А.
  • Бессарабский Ю.Г.
RU2242098C2
Импульсный нейтронный генератор 2019
  • Брагин Сергей Иванович
  • Павлихин Глеб Владимирович
  • Кузнецов Юрий Павлович
RU2703518C1
ИМПУЛЬСНЫЙ ГЕНЕРАТОР ТЕРМОЯДЕРНЫХ НЕЙТРОНОВ 2018
  • Вовченко Евгений Дмитриевич
  • Диденко Андрей Николаевич
  • Козловский Константин Иванович
  • Ращиков Владимир Иванович
  • Шатохин Вадим Леонидович
  • Шиканов Александр Евгеньевич
RU2683963C1

Иллюстрации к изобретению RU 2 603 013 C1

Реферат патента 2016 года ВАКУУМНАЯ НЕЙТРОННАЯ ТРУБКА

Изобретение относится к вакуумной нейтронной трубке и может быть использовано при разработке генераторов нейтронов для активационного анализа сплавов и соединений. Заявленная вакуумная нейтронная трубка содержит герметично запаянный изоляционный корпус (1), в котором размещены управляемый трехэлектродный источник ионов, анод (4) и катод (2) которого насыщены изотопом водорода, мишень (6, 7, 8), газопоглотитель (5), оснащена дополнительным идентичным управляемым трехэлектродным источником ионов и газопоглотителем. При этом мишенный электрод (6) содержит две симметричные мишени (7, 8), насыщенные одним или разными изотопами водорода, и расположен посередине корпуса, на торцах которого напротив накладных мишеней размещены управляемые трехэлектродные источники ионов. Техническим результатом является повышение ресурса работы при расширении функциональных и эксплуатационных возможностей вакуумной нейтронной трубки. 1 ил.

Формула изобретения RU 2 603 013 C1

Вакуумная нейтронная трубка, содержащая герметично запаянный изоляционный корпус, в котором размещены управляемый трехэлектродный источник ионов, анод и катод которого насыщены изотопом водорода, мишень, газопоглотитель, отличающаяся тем, что она оснащена дополнительным идентичным управляемым трехэлектродным источником ионов и газопоглотителем, мишенный электрод содержит две симметричные мишени, насыщенные одним или разными изотопами водорода, и расположен посередине корпуса, на торцах которого напротив мишеней размещены управляемые трехэлектродные источники ионов.

Документы, цитированные в отчете о поиске Патент 2016 года RU2603013C1

СКВАЖИННЫЙ ИЗЛУЧАТЕЛЬ НЕЙТРОНОВ 2014
  • Боголюбов Евгений Петрович
  • Брагин Сергей Иванович
  • Зиневский Александр Игоревич
  • Кузнецов Юрий Павлович
RU2551485C1
БЛОК ИЗЛУЧАТЕЛЯ НЕЙТРОНОВ 2013
  • Бобылев Владимир Тимофеевич
  • Боголюбов Евгений Петрович
  • Брагин Сергей Иванович
  • Пресняков Юрий Константинович
  • Кузнецов Юрий Павлович
RU2541509C1
US 20140348286 A1, 27.11.2014
US 20150092902 A1, 02.04.2015.

RU 2 603 013 C1

Авторы

Бобылев Владимир Тимофеевич

Кузнецов Юрий Павлович

Пресняков Юрий Константинович

Даты

2016-11-20Публикация

2015-11-02Подача