СПОСОБ ОПРЕДЕЛЕНИЯ ОТНОСИТЕЛЬНОЙ ПЛОТНОСТИ НЕФТЯНЫХ МАСЛЯНЫХ ФРАКЦИЙ Российский патент 2016 года по МПК E21B47/00 

Описание патента на изобретение RU2604167C1

Изобретение относится к способам определения относительной плотности нефтяных масляных фракций и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Относительная плотность является важнейшей характеристикой всех видов сырья, продуктов и полупродуктов в процессах нефтехимпереработки, в том числе масляных фракций первичной переработки нефти с установки атмосферно-вакуумной трубчатки.

В лабораторном контроле нефтеперерабатывающих производств распространен ареометрический способ определения относительной плотности масляных фракций (ГОСТ 3900-85).

Недостатки стандартного ареометрического способа:

1) необходимость отбора значительного количества пробы (не менее 150 мл);

2) предварительный нагрев высоковязких образцов масляных фракций до текучего состояния, термостатирования образца.

Наиболее близким техническим решением к заявляемому способу является способ [Шуляковская Д.О., Доломатов М.Ю., Доломатова М.М., Еремина С.А. Метод фотоизображений в информационной системе контроля физико-химических свойств многокомпонентных углеводородных систем // Электротехнические и информационные комплексы и системы. - 2014. - №1. - С. 106-113] определения физико-химических свойств многокомпонентных углеводородных систем по фотоизображениям. В данном способе относительная плотность таких многокомпонентных углеводородных систем, как высококипящие нефтяные фракции (мазуты, гудроны, крекинг-остатки, нефтяные смолы и асфальтены), определяется по фотоизображениям оптически прозрачных растворов данных систем. Суть способа заключается в следующем. Производится приготовление раствора образца. Раствор заливается в прозрачную кювету и производится регистрация фотоизображения раствора с люминесцентной лампой или дневным солнечным светом в качестве источника излучения. Затем в графическом редакторе по фотоизображению для исследуемого раствора определяются координаты цвета R, G, В в колориметрической системе sRGB. Далее определяется координата цвета Xphoto или Yphoto раствора образца в колориметрической системе XYZ путем стандартного перехода из колориметрической системы sRGB в XYZ. Затем определяется координата цвета XD или YD (для стандартного источника D65 CIE) путем корректировки, позволяющей учитывать различие освещения при фотосъемке от стандартного источника D65 CIE. Следующий этап заключается в оценке значения интегрального показателя поглощения исследуемого образца по определенной ранее координате цвета XD или YD и концентрации раствора, расчет которой производится при приготовлении раствора. Затем относительная плотность исследуемой многокомпонентной углеводородной системы определяется по интегральному показателю поглощения по линейной зависимости.

Основным недостатком данного способа является его непригодность для таких систем как нефтяные масляные фракции. Кроме того, способ характеризуется рядом недостатков:

1) необходимостью в процедуре приготовления оптически прозрачных растворов, требующей специальной квалификации персонала лаборатории;

2) необходимостью в переходе от одной колориметрической системы к другой, что приводит к увеличению погрешности определения свойств;

3) дополнительным процессом корректировки цветовых характеристик фотоизображений на стандартный источник излучения;

4) временными затратами, связанными с процессом приготовления растворов, корректировкой цветовых характеристик на стандартный источник, определением интегрального показателя поглощения.

Также наиболее близким техническим решением к заявляемому способу является способ [Доломатов М.Ю., Ярмухаметова Г.У., Доломатова Л.А. Взаимосвязь физико-химических и цветовых свойств углеводородных систем в колориметрических системах RGB и XYZ // Прикладная физика. - 2008. - №4. - С. 43-49] определения физико-химических свойств таких углеводородных систем, как нефти и нефтяные остатки, который основан на так называемой корреляции цвет-свойства:

где Z - физико-химическое свойство исследуемой системы;

q - цветовая характеристика оптически прозрачного раствора в колориметрических системах RGB и XYZ;

β1, β2 - эмпирические коэффициенты, зависящие от типа цветовой характеристики и класса углеводородной системы.

Цветовые характеристики растворов многокомпонентных углеводородных систем рассчитываются в стандартных колориметрических системах XYZ и RGB по электронным абсорбционным спектрам поглощения излучения в видимом диапазоне электромагнитного спектра в интервале от 380 до 780 нм. Методика расчета цветовых характеристик, зависящих от стандартных источников излучения (А, В, С или D CIE), состоит из следующих этапов:

1. Расчет координат цвета (X, Y, Z) в колориметрической системе XYZ:

где E(λi) - спектральная характеристика стандартного источника излучения (А, В, С или D);

x ¯ ( λ ) , y ¯ ( λ ) , z ¯ ( λ ) - функции сложения стандартного колориметрического наблюдателя;

τ(λi) - функция спектрального коэффициента пропускания в видимой области спектра;

с - концентрация исследуемого раствора, г/л;

l - толщина поглощающего слоя раствора, см;

k(λi) - коэффициенты поглощения излучения в видимой области, л/(г·см) (в системе СИ 102·м2/кг);

n - количество частичных интервалов разбиения спектра.

2. Расчет координат цвета (R, G, В) в колориметрической системе RGB:

3. Расчет координат цветности (x, у, z) системы XYZ и (r, g, b) системы RGB по формулам:

где m, mRGB - цветовой модуль в колориметрических системах XYZ и RGB.

Данный способ также непригоден для таких систем как нефтяные масляные фракции. Кроме того, способ характеризуется рядом недостатков:

1) длительность процесса снятия спектра в видимой области спектра;

2) необходимость использования специального спектрометра;

3) способ может быть применим для оптически прозрачных растворов веществ только заданной концентрации.

Целью изобретения является упрощение и повышение производительности способа определения относительной плотности ρ 4 15 (при температуре образца 15°С и температуре воды 4°С) нефтяных масляных фракций первичной переработки нефти с установки атмосферно-вакуумной трубчатки нефтеперерабатывающего завода с температурами кипения от 300-550°С (второй, третьей, четвертой и пятой фракции). Поставленная цель достигается за счет того, что предлагаемый способ имеет повышенную экспрессность, применимость для различных нефтяных масляных фракций с температурами кипения от 300-550°С. Способ предусматривает упрощение технологии в связи с отсутствием необходимости подготовки образцов и существенным упрощением необходимых расчетов, а также упрощением используемой аппаратуры.

Суть способа заключается в связи плотности и концентрации светопоглощающих центров в оптически прозрачной среде. В масляных фракциях, как известно, присутствуют полициклические углеводороды с числом колец более трех, нафтеноароматические компоненты и компоненты с гетероатомами азота, серы и кислорода. Такие компоненты при переходе из возбужденного в стабильное состояние излучают свет в видимой области (обладают цветностью), что соответствует π-π* или π-n переходам.

Предлагаемый способ заключается в том, что определение относительной плотности ρ 4 15 нефтяной масляной фракции производится по ее цветовым характеристикам координатам красного, зеленого и синего цвета, отличающийся тем, что координаты цвета RsRGB, GsRGB и BsRGB нефтяной масляной фракции определяются в колориметрической системе sRGB в растровом графическом редакторе по фотоизображению нефтяной масляной фракции, которое регистрируется с дневным светом в качестве источника излучения, путем помещения нефтяной масляной фракции в прозрачную кювету, при этом относительная плотность рассчитывается по установленной зависимости:

Предлагаемый способ осуществляется следующим образом. Небольшую навеску исследуемой нефтяной масляной фракции помещают в прозрачную кювету размером 10*20 мм (шириной 20 мм и толщиной 10 мм) и регистрирую фотоизображение кюветы с масляной фракцией с дневным светом в качестве источника излучения. Регистрация фотоизображения производится цифровым фотоаппаратом с разрешением 10 мегапикселей (размер матрицы 3872×2592 пиксела) и более.

Полученное фотоизображение обрабатывают в растровом графическом редакторе и получают координаты красного, зеленого и синего цвета (RsRGB, GsRGB, BsRGB) в колориметрической системе sRGB.

Рассчитывают относительную плотность нефтяной масляной фракции ρ 4 15 по установленной зависимости:

|где ρ 4 15 - относительная плотность нефтяной масляной фракции (при стандартной температуре образца 15°С и температуре воды 4°С);

RsRGB, GsRGB, BsRGB - координаты соответственно красного, зеленого и синего цвета в колориметрической системе sRGB, определяемые по фотоизображению нефтяной масляной фракции.

Пример 1. Определяют относительную плотность ρ 4 15 второй масляной фракции (температура кипения 300-400°С). Координаты цвета исследуемой нефтяной масляной фракции в колориметрической системе sRGB равны RsRGB=127, GsRGB=125, BsRGB=46. Рассчитывают относительную плотность ρ 4 15 второй масляной фракции (температура кипения 300-400°С) по зависимости (7):

Пример 2. Определяют относительную плотность ρ 4 15 третьей масляной фракции (температура кипения 350-420°С). Координаты цвета исследуемой нефтяной масляной фракции в колориметрической системе sRGB равны RsRGB=118, GsRGB=94, BsRGB=26. Рассчитывают относительную плотность ρ 4 15 третьей масляной фракции (температура кипения 350-420°С) по зависимости (7):

Пример 3. Определяют относительную плотность четвертой масляной фракции (температура кипения 420-500°С). Координаты цвета исследуемой нефтяной масляной фракции в колориметрической системе sRGB равны RsRGB=119, GsRGB=81, BsRGB=22. Рассчитывают относительную плотность ρ 4 15 четвертой масляной фракции (температура кипения 420-500°С) по зависимости (7):

Пример 4. Определяют относительную плотность ρ 4 15 пятой масляной фракции (температура кипения 450-550°С). Координаты цвета исследуемой нефтяной масляной фракции в колориметрической системе sRGB равны RsRGB=96, GsRGB=30, BsRGB=25. Рассчитывают относительную плотность ρ 4 15 пятой масляной фракции (температура кипения 450-550°С) по зависимости (7):

Значения относительной плотности ρ 4 15 исследуемых масляных фракций (примеры 1-4), определенные стандартным ареометрическим способом (ГОСТ 3900-85) и предлагаемым способом приведены в таблице 1.

Вывод: как следует из таблицы 1, относительная погрешность определения относительной плотности ρ 4 15 нефтяных масляных фракций по предлагаемому способу по сравнению со стандартным в среднем составляет 0,45%. Следовательно, предлагаемый способ может быть использован для экспрессного определения относительной плотности нефтяных масляных фракций.

Преимущества заявляемого способа экспрессного определения относительной плотности ρ 4 15 нефтяных масляных фракций заключаются в следующем:

1. использование небольшого количества образца нефтяной масляной фракции (порядка 3 мл);

1. не требуется предварительная подготовка образцов: нагрев высоковязких образцов нефтяных масляных фракций до текучего состояния, термостатирование, а также не требуется приготовление растворов;

2. достаточно одного фотографического изображения;

3. подходит для нефтяных масляных фракций в широком диапазоне температур кипения 300-550°С;

4. имеется потенциальная возможность дистанционного контроля относительной плотности ρ 4 15 нефтяных масляных фракций без отбора проб, что позволяет применять способ в системе оперативного контроля качества сырья и продуктов маслоблоков на нефтеперерабатывающих заводах.

Похожие патенты RU2604167C1

название год авторы номер документа
Способ определения температуры вспышки в закрытом тигле нефтяных масляных фракций 2015
  • Шуляковская Дарья Олеговна
  • Доломатов Михаил Юрьевич
  • Манапов Рафаэль Салихович
  • Доломатова Милана Михайловна
RU2615034C2
Способ определения цвета по шкале ЦНТ нефтяных масляных фракций 2015
  • Шуляковская Дарья Олеговна
  • Доломатов Михаил Юрьевич
  • Манапов Рафаэль Салихович
RU2606837C1
СПОСОБ ОПРЕДЕЛЕНИЯ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ МНОГОКОМПОНЕНТНЫХ УГЛЕВОДОРОДНЫХ СИСТЕМ 2013
  • Доломатов Михаил Юрьевич
  • Шуляковская Дарья Олеговна
  • Долматова Милана Михайловна
RU2560709C2
Способ определения эффективного потенциала ионизации и эффективного сродства к электрону многокомпонентных ароматических конденсированных сред 2016
  • Доломатов Михаил Юрьевич
  • Паймурзина Наталья Халитовна
  • Шуляковская Дарья Олеговна
  • Доломатова Милана Михайловна
RU2621481C1
СПОСОБ ОПРЕДЕЛЕНИЯ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ МНОГОКОМПОНЕНТНЫХ УГЛЕВОДОРОДНЫХ СИСТЕМ 2016
  • Ярмухаметова Гульнара Ульфатовна
  • Доломатов Михаил Юрьевич
  • Еремина Светлана Андреевна
RU2616519C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПОТЕНЦИАЛА ИОНИЗАЦИИ И СРОДСТВА К ЭЛЕКТРОНУ 2009
  • Доломатов Михаил Юрьевич
  • Ярмухаметова Гульнара Ульфатовна
  • Шуляковская Дарья Олеговна
RU2425357C2
СПОСОБ ОПРЕДЕЛЕНИЯ ЦВЕТНОСТИ ВОДЫ 2014
  • Зобков Михаил Борисович
RU2572672C1
СПОСОБ И СИСТЕМА ДЛЯ ОПРЕДЕЛЕНИЯ ЦВЕТА ИЗ ИЗОБРАЖЕНИЯ 2011
  • Лингс Бенджамин Бучанан
  • Хэрроп Пол Джеймс
  • Спирс Питер Марк
  • Лонгхерст Стюарт
RU2567863C2
СПОСОБ КОНТРОЛЯ КАЧЕСТВА БУМАЖНОЙ ИЗОЛЯЦИИ ТРАНСФОРМАТОРА 2009
  • Козлов Владимир Константинович
  • Сабитов Айдар Хайдарович
  • Сабитов Ильдар Хайдарович
RU2392684C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА АНАЛИЗИРУЕМОГО ВЕЩЕСТВА ПО ЦВЕТОВОЙ ШКАЛЕ 2010
  • Муравьев Сергей Васильевич
  • Гавриленко Наталья Айратовна
  • Спиридонова Анна Сергеевна
  • Силушкин Станислав Владимирович
RU2428663C1

Реферат патента 2016 года СПОСОБ ОПРЕДЕЛЕНИЯ ОТНОСИТЕЛЬНОЙ ПЛОТНОСТИ НЕФТЯНЫХ МАСЛЯНЫХ ФРАКЦИЙ

Изобретение относится к способам определения относительной плотности нефтяных масляных фракций и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Способ определения относительной плотности нефтяных масляных фракций путем определения ее цветовых характеристик, координат красного, зеленого и синего цвета. При этом координаты цвета RsRGB, GsRGB и BsRGB нефтяной масляной фракции определяются в колориметрической системе sRGB в растровом графическом редакторе по фотоизображению нефтяной масляной фракции, которое регистрируется с дневным светом в качестве источника излучения, путем помещения нефтяной масляной фракции в прозрачную кювету. При этом относительная плотность рассчитывается по формуле:

где - относительная плотность нефтяной масляной фракции (при стандартной температуре образца 15°C и температуре воды 4°C), RsRGB, GsRGB, BsRGB - координаты соответственно красного, зеленого и синего цвета в колориметрической системе sRGB, определяемые по фотоизображению нефтяной масляной фракции. Техническим результатом является упрощение и повышение производительности способа определения относительной плотности ρ 4 15 (при температуре образца 15°С и температуре воды 4°С) нефтяных масляных фракций первичной переработки нефти. 1 табл.

Формула изобретения RU 2 604 167 C1

Способ определения относительной плотности нефтяных масляных фракций путем определения ее цветовых характеристик, координат красного, зеленого и синего цвета, отличающийся тем, что координаты цвета RsRGB, GsRGB и BsRGB нефтяной масляной фракции определяются в колориметрической системе sRGB в растровом графическом редакторе по фотоизображению нефтяной масляной фракции, которое регистрируется с дневным светом в качестве источника излучения, путем помещения нефтяной масляной фракции в прозрачную кювету, при этом относительная плотность рассчитывается по формуле:

где - относительная плотность нефтяной масляной фракции (при стандартной температуре образца 15°C и температуре воды 4°C);
RsRGB, GsRGB, BsRGB - координаты соответственно красного, зеленого и синего цвета в колориметрической системе sRGB, определяемые по фотоизображению нефтяной масляной фракции.

Документы, цитированные в отчете о поиске Патент 2016 года RU2604167C1

ШУЛЯКОВСКАЯ ДАРЬЯ ОЛЕГОВНА, Диссертация на соискание ученой степени кандидата технических наук, РАЗРАБОТКА И ПРИМЕНЕНИЕ ОПТИЧЕСКИХ МЕТОДОВ ОПРЕДЕЛЕНИЯ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ ВЫСОКОКИПЯЩИХ НЕФТЯНЫХ ФРАКЦИЙ, 1-184, Уфа-2014
Доломатов М.Ю
et al, Наноэлектроника и квантовые информационные системы, МЕТОД ФОТОИЗОБРАЖЕНИЙ В ИНФОРМАЦИОННОЙ СИСТЕМЕ

RU 2 604 167 C1

Авторы

Шуляковская Дарья Олеговна

Доломатов Михаил Юрьевич

Манапов Рафаэль Салихович

Даты

2016-12-10Публикация

2015-09-14Подача