СПОСОБ РАЗМЕЩЕНИЯ ДВИГАТЕЛЯ НА ЛЕТАТЕЛЬНОМ АППАРАТЕ ТИПА "ЛЕТАЮЩЕЕ КРЫЛО" Российский патент 2016 года по МПК B64D27/18 B64C39/10 

Описание патента на изобретение RU2605653C1

Изобретение относится к авиационной технике, в частности к способам размещения двигателя на летательном аппарате типа «летающее крыло».

Известен способ размещения двигателя летательного аппарата, заключающийся в том, что турбореактивные двигатели установлены над поверхностью крыла так, что оси их параллельны плоскости хорд крыла и отстоят от нее на расстоянии не более 20% от средней аэродинамической хорды крыла, а входной диффузор двигателей находится над задней кромкой центроплана на расстоянии не более 5% от средней аэродинамической хорды крыла (патент РФ №2311317, кл. B64D 27/10, 2007 г.). Способ относится к летательным аппаратам общего назначения классической схемы, с дальностью полета 3-5 тыс км, рассчитанного на 12-14 человек, и не может применяться к летательным аппаратам типа «летающее крыло».

Известен способ размещения двигателя летательного аппарата, заключающийся в том, что двигатели установлены спереди под крылом самолета с возможностью изменения положения двигателей в зависимости от режима работы (патент РФ №2469916, кл. B64D 27/00, 2012 г.). Подвеска двигателей осуществляется при помощи пилонов и соответствующих средств изменения положения двигателей по высоте относительно крыла при взлете-посадке и в крейсерском режиме. Наличие средств изменения положения двигателей может привести к дополнительному увеличению аэродинамического сопротивления, что является недостатком известного технического решения.

Наиболее близким по совокупности существенных признаков к заявляемому техническому решению является способ размещения двигателя на летательном аппарате типа «летающее крыло», заключающийся в том, что двигатель устанавливают вблизи хвостовой части крыла (заявка США №2002/0134886, кл. В64В 1/24, 2002 г.). Недостаток известного технического решения заключается в том, что образующийся на поверхности крыла пограничный слой отрывается по всей ширине крыла и приобретает завихренный турбулентный характер. Это приводит к большим потерям полного давления и значительной неравномерности газодинамических параметров во всем течении. Попадая на вход воздухозаборника, неравномерный поток вносит в работу двигателя большие искажения, что приводит к снижению тяги двигателей и повышенному расходу топлива.

В основу предлагаемого технического решения положена задача повышения аэродинамической эффективности конструкции при размещении мотогондолы двигателя в хвостовой части крыла.

Технический результат предлагаемого способа заключается в повышении аэродинамического качества конструкции за счет создания однородного потока при заданном удалении мотогондолы двигателя от поверхности крыла.

Заявленный технический результат достигается тем, что при способе размещения двигателя на летательном аппарате типа «летающее крыло» мотогондолу двигателя устанавливают в хвостовой части крыла таким образом, что зазор между нижней точкой мотогондолы и поверхностью крыла составляет: (0,37-0,41)D,

где D - внутренний диаметр входного сечения воздухозаборника.

Указанные существенные признаки обеспечивают достижение технического результата, т.к. размещение мотогондолы в кормовой части поверхности крыла с заданным расстоянием между ее нижней точкой и поверхностью крыла обеспечивает максимальную однородность потока на входе в воздухозаборник.

Настоящее изобретение поясняется следующим описанием со ссылкой на иллюстрации, представленные на фиг. 1 … фиг. 6, где

- на фиг. 1 изображена схема конструкции «летающее крыло»+силовая установка с мотогондолой двигателя;

- на фиг. 2 изображена схема оптимального расположения мотогондолы над поверхностью крыла (вид сбоку);

- на фиг. 3 изображена схема расположения мотогондолы над поверхностью крыла в проекции на плоскость симметрии;

- на фиг. 4 изображено распределение пограничного слоя на входе в воздухозаборник для L=1,05D;

- на фиг. 5 изображено распределение пограничного слоя на входе в воздухозаборник для L=0,25D;

- на фиг. 6 изображено распределение пограничного слоя на входе в воздухозаборник для L=0,39D (оптимальное решение).

Способ осуществляется следующим образом. Летательный аппарат типа «летающее крыло» имеет конструкцию, характеризующуюся размещением мотогондолы 1 двигателя в хвостовой (кормовой) части крыла 2 вблизи поверхности последнего. Результаты исследования процесса газодинамического обтекания потоком летательного аппарата типа «летающее крыло» с силовой установкой, состоящей из двух двигателей, или с распределенной силовой установкой, расположенными в хвостовой (кормовой) части крыла при крейсерском режиме полета (Н=11000 м, М=0,83, диапазон изменения угла атаки от 0 до 12,5°), показали, что существует оптимальное значение удаления мотогондолы 1 от поверхности крыла 2. Зазор L между нижней точкой мотогондолы на ее входе и поверхностью крыла выбирают из соотношения:

L=(0,37-0,41)D,

где D - внутренний диаметр входного сечения воздухозаборника.

При расположении мотогондолы на расстоянии меньше указанного соотношения возникает сверхзвуковая область течения между крылом и воздухозаборником (максимальное значение числа М=1,6), заканчивающаяся серией скачков уплотнения. Взаимодействие последних с пограничными слоями на поверхности крыла и мотогондолы вызывает отрыв потока с интенсивным вихреобразованием, что приводит к существенным потерям полного давления. При удалении мотогондолы от поверхности крыла на расстояние больше указанного входное сечение находится в замедленном скоростном течении, что подтверждается образованием четко выраженного пограничного слоя на стенках воздухозаборника. Эти особенности обтекания сказываются на характеристиках летательного аппарата. При размещении воздухозаборника в соответствии с указанным соотношением поток на входе в двигатель максимально однороден. Отсутствие при этом отрыва течения и сопутствующего ему вихреобразования вблизи входа в двигатель объясняется наличием эжекционного эффекта, который увлекает пограничный слой выхлопной струей двигателя, обеспечивая при этом максимально возможную однородность потока на входе в воздухозаборник.

Важнейшей характеристикой (показателем аэродинамического качества) летательного аппарата является отношение коэффициента Сy подъемной силы к величине коэффициента Сх сопротивления трения, которые представляют собой силы, действующие на летательный аппарат при его движении, отнесенные к скоростному напору потока, набегающего на летательный аппарат. В зависимости от назначения летательного аппарата, благодаря рациональной аэродинамической компоновке крыла и мотогондол величина аэродинамического качества Cy/Cx для современных самолетов достигает 14-15. При выборе оптимальных значений управления «летающим крылом» его Cy/Cx≥20.

Проведено исследование газодинамического обтекания летательного аппарата «летающее крыло» в указанных выше двух компоновках: с силовой установкой (СУ), составленной из двух двигателей, и с распределенной силовой установкой, расположенной в кормовой части на крейсерском режиме полета (Н=11000 м при М=0,83 и углах атаки 2, и 5 градусов) и при расположении СУ на расстояниях L=0, 15D и L=0, 39D.

В таблице представлены результаты интегральных значений Cy/Cx.

Данные, представленные в таблице, подтверждают существование оптимального значения расстояния между мотогондолой и крылом, позволяющим улучшить аэродинамическую эффективность конструкции.

Таким образом, предложенный способ позволяет создать однородный поток при заданном удалении воздухозаборника двигателя от поверхности крыла, что повышает аэродинамическую эффективность конструкции при размещении мотогондолы двигателя в хвостовой части крыла.

Похожие патенты RU2605653C1

название год авторы номер документа
Магистральный самолет с гибридной силовой установкой 2024
  • Новогородцев Егор Валентинович
  • Колток Никита Григорьевич
  • Пигусов Евгений Александрович
  • Донских Владимир Дмитриевич
  • Чанов Максим Николаевич
RU2838700C1
СИЛОВАЯ УСТАНОВКА С ОТБОРОМ ПОГРАНИЧНОГО СЛОЯ ФЮЗЕЛЯЖА 2008
  • Уджуху Аслан Юсуфович
  • Сонин Олег Владимирович
RU2361779C1
СПОСОБ КОМПЛЕКСНОГО ПОВЫШЕНИЯ АЭРОДИНАМИЧЕСКИХ И ТРАНСПОРТНЫХ ХАРАКТЕРИСТИК, СПОСОБ УПРАВЛЕНИЯ ПОЛЕТОМ И ЛЕТАТЕЛЬНЫЙ АППАРАТ - НАЗЕМНО-ВОЗДУШНАЯ АМФИБИЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ УКАЗАННЫХ СПОСОБОВ 1997
  • Назаров В.В.
RU2123443C1
Воздухозаборное устройство летательного аппарата 2023
  • Новогородцев Егор Валентинович
  • Колток Никита Григорьевич
  • Пигусов Евгений Александрович
  • Кузин Сергей Александрович
  • Волков Андрей Игоревич
RU2830325C1
Многоцелевая сверхтяжелая транспортная технологическая авиационная платформа укороченного взлета и посадки 2019
  • Папиашвили Шота Георгиевич
  • Клочков Дмитрий Вячеславович
  • Ратников Кирилл Владимирович
RU2714176C1
ЛЕТАТЕЛЬНЫЙ АППАРАТ 2012
  • Субботин Виктор Владимирович
  • Титов Владимир Николаевич
  • Власов Сергей Анатольевич
  • Бабулин Андрей Александрович
  • Тюрин Сергей Викторович
RU2517629C1
ЛЕТАТЕЛЬНЫЙ АППАРАТ 2012
  • Субботин Виктор Владимирович
  • Титов Владимир Николаевич
  • Чайка Тарас Юрьевич
  • Юдин Владимир Григорьевич
  • Власов Сергей Анатольевич
  • Косицин Александр Анатольевич
  • Бабулин Андрей Александрович
  • Тюрин Сергей Викторович
RU2517627C1
ЛЕТАТЕЛЬНЫЙ АППАРАТ 2014
  • Пчентлешев Валерий Туркубеевич
RU2577824C1
ЛЕТАТЕЛЬНЫЙ АППАРАТ (ВАРИАНТЫ) 2012
  • Пчентлешев Валерий Туркубеевич
RU2486105C1
ЛЕТАТЕЛЬНЫЙ АППАРАТ, СИСТЕМА УПРАВЛЕНИЯ ОТСОСОМ ПОГРАНИЧНОГО СЛОЯ, СИСТЕМА УПРАВЛЕНИЯ ВДУВОМ В ПОГРАНИЧНЫЙ СЛОЙ, УСТРОЙСТВО ФИКСАЦИИ ПОЛОЖЕНИЯ СХОДА ПОТОКА С ЗАДНЕЙ КРОМКИ ФЮЗЕЛЯЖА И ЕГО ВЗЛЕТНО-ПОСАДОЧНОЕ УСТРОЙСТВО НА ВОЗДУШНОЙ ПОДУШКЕ 1992
  • Щукин Л.Н.
  • Савицкий А.И.
  • Щукин И.Л.
  • Масс А.М.
  • Карелин В.Г.
  • Шибанов А.П.
  • Собко А.П.
  • Ермишин А.В.
  • Хуцишвили В.Г.
  • Пушкин Р.М.
  • Фищенко С.В.
RU2033945C1

Иллюстрации к изобретению RU 2 605 653 C1

Реферат патента 2016 года СПОСОБ РАЗМЕЩЕНИЯ ДВИГАТЕЛЯ НА ЛЕТАТЕЛЬНОМ АППАРАТЕ ТИПА "ЛЕТАЮЩЕЕ КРЫЛО"

Изобретение относится к авиационной технике. Способ размещения двигателя на летательном аппарате типа «летающее крыло» заключается в том, что мотогондолу (1) двигателя устанавливают в хвостовой части крыла (2) таким образом, что зазор между нижней точкой мотогондолы (1) двигателя и поверхностью крыла (2) составляет (0,37-0,41)D, где D - внутренний диаметр входного сечения воздухозаборника. Изобретение повышает аэродинамическое качество. 1 табл., 6 ил.

Формула изобретения RU 2 605 653 C1

Способ размещения двигателя на летательном аппарате типа «летающее крыло», заключающийся в том, что мотогондолу двигателя устанавливают в хвостовой части крыла таким образом, что зазор между нижней точкой мотогондолы двигателя и поверхностью крыла составляет (0,37-0,41)D,
где D - внутренний диаметр входного сечения воздухозаборника.

Документы, цитированные в отчете о поиске Патент 2016 года RU2605653C1

US20020134886 A1, 26.09.2002
US7766275 B2, 03.08.2010
US6102332 A1, 15.08.2000
САМОЛЕТ 1999
  • Карасев В.В.
RU2168447C2
ЛЕТАТЕЛЬНЫЙ АППАРАТ СХЕМЫ "ЛЕТАЮЩЕЕ КРЫЛО" 2013
  • Пеков Алексей Николаевич
RU2557685C2

RU 2 605 653 C1

Авторы

Слободкина Франческа Александровна

Даты

2016-12-27Публикация

2015-08-28Подача