Описание изобретения
Изобретение относится к радиоэлектронике. Оно может использоваться тогда, когда требуется изменить направление излучения полупроводникового вертикально излучающего лазера. Кроме того, будет уменьшаться и расходимость этого излучения.
Применение этого изобретения в радиоэлектронике объясняется следующим.
При больших частотах (скоростях передачи) в несколько гигабит в секунду в медных проводниках (дорожках) печатной платы возникают сильные искажения сигналов, как за счет увеличения сопротивления самих проводников, так и из-за резонансных явлений, и выход находят в использовании оптических соединений, когда исходный электрический сигнал при помощи микролазера преобразуют в оптический, затем осуществляют передачу оптического сигнала по волокну (полимерному оптическому волноводу), прием оптического сигнала микрофотодетектором и преобразование оптического сигнала в исходный электрический. Оптический сигнал в этом случае необходимо передать с наименьшими потерями, так как мощность микролазера очень мала, а излучение имеет свойство в значительной степени рассеиваться.
Для передачи оптического сигнала между компонентами электронного модуля используют лазеры и приемники, выполненные в виде соответствующих кристаллов. Особенности технологии получения этих элементов определяют их конструктивные особенности: излучающая и приемная площадки элементов могут быть направлены либо вверх (кристалл монтируется на подложку "лицом вверх"), либо вниз (кристалл монтируется на подложку "лицом вниз"). Поэтому для передачи оптического сигнала в этом случае существует и проблема поворота луча.
Во всех известных решениях с высокими эксплуатационными характеристиками для изменения направления лазерного излучения используются микрозеркала (http://www.lps.umd.edu/AdvancedComputing/AdvancedComputingSystemsIndex.html;
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-17-26-24250&id=194158;
https://www.osapublishing.org/aop/fulltext.cfm?uri=oe-17-3-1215&id=176047;
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-13-16-6259&id=85290).
Однако микрозеркала на этапе сборки нуждаются в точной юстировке по трем осям, что является существенной проблемой для серийного производства модулей, содержащих решения с VCSEL (vertical-cavity surface-emitting laser - вертикально излучающий лазер). Кроме того, микрозеркала не решают проблему рассеивания излучения, что негативно сказывается при дальнейшем распространении излучения в волноводе из-за потерь.
В диссертации (Karppinen M. High bit-rate optical interconnects on printed wiring board. Micro-optics and hybrid integration, Edita prima Oy, Helsinki, 2008, p. 71-72) используют зеркала и микролинзы для поворота и уменьшения расходимости лазерного излучения. Однако линзы и зеркала требуют тщательной юстировки, и при серийном производстве это оказывается узким местом.
В диссертации (Takahara H. Optoelectronic Packaging Trends in Japan. Stanford University, US-Asia TMC, May 2003, p. 6) также используют зеркала и микролинзы, которые требуют тщательной установки.
Известно, что использование дифракционных решеток позволяет отклонить пучок лазерных лучей и уменьшить его диаметр (htts://www.osapublishing.org/oe/fulltext.cfm?uri=oe-21-7-7868&id=251662; http://opto.ee.cuhk.edu.hk/Tsang/research.html). Особенностью применения дифракционной решетки в качестве отражательного оптического элемента является отсутствие жестких требований по ее расположению относительно излучающей площадки. Все это позволяет эффективно использовать дифракционную решетку для изменения направления и уменьшения расходимости излучения полупроводникового вертикально излучающего лазера, когда это требуется, если предполагается серийное производство.
Технический результат изобретения - расширение арсенала способов изменения направления и уменьшения расходимости излучения полупроводникового вертикально излучающего лазера.
Один из вариантов реализации использования дифракционной решетки для изменения направления и уменьшения расходимости излучения полупроводникового вертикально излучающего лазера сводится к следующему (пример иллюстрируется фиг. 1 и 2):
1. Снимают характеристики излучателя типа VCSEL (изготовленного ранее, покупного) путем проведения измерения диаграммы оптического излучения.
2. Создают компьютерную модель излучателя, в которой эти характеристики используют как исходные.
3. Используя модель излучателя, моделируют дифракционную решетку (шаг, материал и геометрию нарезки решетки) таким образом, чтобы обеспечить требуемый поворот излучения и диаграмму его распространения и после соединения с кристаллом излучателя оставить доступными электрические контактные площадки VCSEL или часть их.
4. На основании модели изготавливают кристалл дифракционной решетки 1.
5. Кристаллы излучателя 2 и дифракционной решетки разогревают до температуры 100…140°C.
6. Берут клей (например, Namics DA8483, ЕРО-ТЕК H20S, или КТК-7), также разогревают до температуры 100…140°C и выдерживают 4…6 мин.
7. Кристалл излучателя располагают в рабочем положении (в данном случае излучающей площадкой вверх).
8. На необходимую часть поверхности кристалла VCSEL методом трафаретной печати посредством шприцевания наносят клей, причем толщина слоя клея не должна превышать 7 мкм.
9. С помощью позиционера на кристалл излучателя помещают кристалл дифракционной решетки и производят склеивание соответствующих поверхностей с допуском по обеим координатам ±2…4 мкм. При этом прикладывают усилие монтажа в пределах 1…3 кгс в течение 0,5 с.
10. Сборку помещают в сушильную камеру на 120 мин для отверждения клея при температуре 170…180°C.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОБРАЗОВАНИЯ КАНАЛА ДЛЯ ПЕРЕДАЧИ ОПТИЧЕСКОГО СИГНАЛА МЕЖДУ КОМПОНЕНТАМИ ЭЛЕКТРОННОГО МОДУЛЯ | 2014 |
|
RU2568341C1 |
СПОСОБ ФОРМИРОВАНИЯ КАНАЛА ДЛЯ ПЕРЕДАЧИ ОПТИЧЕСКОГО СИГНАЛА МЕЖДУ КОМПОНЕНТАМИ ЭЛЕКТРОННОГО МОДУЛЯ | 2013 |
|
RU2561202C2 |
ЛАЗЕРНЫЙ ПРИБОР С ВНУТРЕННЕ ПРИСУЩЕЙ БЕЗОПАСНОСТЬЮ, СОДЕРЖАЩИЙ ЛАЗЕР ПОВЕРХНОСТНОГО ИЗЛУЧЕНИЯ С ВЕРТИКАЛЬНЫМ РЕЗОНАТОРОМ | 2018 |
|
RU2723143C1 |
МИКРОЛАЗЕР (ВАРИАНТЫ) | 2000 |
|
RU2182739C2 |
ОПТИЧЕСКОЕ УСТРОЙСТВО | 1996 |
|
RU2153746C2 |
ЛАЗЕРНЫЙ ПРИБОР ДЛЯ ПРОЕЦИРОВАНИЯ СТРУКТУРИРОВАННОЙ КАРТИНЫ ОСВЕЩЕНИЯ НА СЦЕНУ | 2013 |
|
RU2655475C2 |
СПОСОБ СИНХРОНИЗАЦИИ ЛИНЕЙКИ ЛАЗЕРНЫХ ДИОДОВ И РЕЗОНАНСНОЕ РЕШЕТЧАТОЕ ВОЛНОВОДНОЕ ЗЕРКАЛО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2008 |
|
RU2429555C2 |
СПОСОБ СЕЛЕКЦИИ ОПТИЧЕСКИХ МОД В МИКРОРЕЗОНАТОРАХ С ИСПОЛЬЗОВАНИЕМ НАНОАНТЕНН | 2015 |
|
RU2721586C2 |
ПОВЕРХНОСТНО-ИЗЛУЧАЮЩИЙ ЛАЗЕРНЫЙ ПРИБОР С ВЕРТИКАЛЬНЫМ ВНЕШНИМ РЕЗОНАТОРОМ С ОПТИЧЕСКОЙ НАКАЧКОЙ | 2013 |
|
RU2623663C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО ПОЛОЖЕНИЯ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2014 |
|
RU2580908C1 |
Способ изменения направления и уменьшения расходимости излучения полупроводникового вертикально излучающего лазера включает в себя измерение диаграммы направленности VCSEL. Используют модель излучения для моделирования дифракционной решетки таким образом, чтобы обеспечить требуемый поворот излучения и диаграмму его распространения. На основании модели изготавливают дифракционную решетку. Разогревают дифракционную решетку и кристалл излучателя. На кристалл излучателя помещают дифракционную решетку и производят их склеивание. Технический результат изобретения - расширение арсенала способов изменения направления и уменьшения расходимости излучения полупроводникового вертикально излучающего лазера. 2 ил.
Способ изменения направления и уменьшения расходимости излучения полупроводникового вертикально излучающего лазера, заключающийся в том, что для его реализации снимают характеристики излучателя типа VCSEL путем проведения измерения диаграммы оптического излучения, создают компьютерную модель излучателя, в которой эти характеристики используют как исходные, используя модель излучателя, моделируют дифракционную решетку таким образом, чтобы обеспечить требуемый поворот излучения и диаграмму его распространения и после соединения с кристаллом излучателя оставить доступными электрические контактные площадки VCSEL или часть их; на основании модели изготавливают кристалл дифракционной решетки, кристаллы излучателя и дифракционной решетки разогревают до температуры 100…140°C, берут клей (например, Namics DA8483, ЕРО-ТЕК H20S, или КТК-7), также разогревают до температуры 100…140°C и выдерживают 4…6 мин; кристалл излучателя располагают в рабочем положении, на необходимую часть поверхности кристалла VCSEL методом трафаретной печати посредством шприцевания наносят клей, причем толщина слоя клея не должна превышать 7 мкм, с помощью позиционера на кристалл излучателя помещают кристалл дифракционной решетки и производят склеивание соответствующих поверхностей с допуском по обеим координатам ±2…4 мкм с усилием монтажа в пределах 1…3 кгс в течение 0,5 с, наконец, сборку помещают в сушильную камеру на 120 мин для отверждения клея при температуре 170…180°C.
US 20040109483 A1 10.06.2004 | |||
Способ брикетирования многокомпонентных материалов и устройство для его осуществления | 1981 |
|
SU1008008A1 |
US 5878070 A1 02.03.1999 | |||
ФОРМИРОВАТЕЛЬ ПУЧКА | 2001 |
|
RU2301435C2 |
Авторы
Даты
2017-01-10—Публикация
2015-07-02—Подача