Изобретение относится к измерительной технике и, в частности, может быть использовано для одновременного измерения расстояния до объектов, находящихся в поле обзора, их угловых координат и взаимного расположения.
Известен способ обнаружения объектов, измерения скорости, дальности и угловых координат, состоящий в излучении в направлении зоны обзора импульса света, например, с помощью инфракрасных светодиодов и детектировании отраженных импульсов света, например, с помощью фоточувствительных элементов. При излучении одного импульса света от объектов в зоне обзора, находящихся на разных угловых координатах и разных расстояниях, отражаются множество импульсов света, которые фокусируются и детектируются фоточувствительными элементами. Положение фоточувствительного элемента, на который поступает отраженный импульс света, определяет угловые координаты объекта в зоне обзора, от которого поступил сигнал, соответствующий детектированному импульсу света. Импульс света, в силу Эффекта Доплера, при отражении от движущегося объекта изменяет свою длительность - увеличивается, если объект удаляется, и уменьшается, если объект приближается, при этом изменяются несущая частота и частота модуляции сигнала. Изменение несущей частоты при отражении от движущегося объекта приводит к изменению длительности отраженного импульса света. Сигналы от отраженных импульсов света, детектированные на фоточувствительных элементах, оцифровывают [Способ обнаружения объектов, измерения скорости, дальности и угловых координат и устройство для его осуществления [Патент РФ №2521203 C1, М.кл. G01C 3/08; G01S 17/58; G01P 3/36 от 27.12.2012 г.].
Недостатком этого способа является ограниченное поле обзора из-за узкой диаграммы направленности излучения.
Известны фасеточные оптико-электронные системы, поле обзора которых перекрывается множеством оптических каналов, состоящих из объектива и приемника излучения (Устройство для обнаружения и измерения азимутального угла светоизлучающих импульсных объектов, [патент РФ №2494343 С1, М.кл. G01С 1/00 от 10.04.2012 г.]). Такие системы обладают высоким быстродействием, но не обеспечивают измерение дальности до объекта, что является их недостатком.
Наиболее близким по технической сущности и достигаемому результату является способ наземного лазерного сканирования, заключающийся в направлении лазерного импульсного излучения с малым углом расходимости на объекты, сканировании лазерным излучением поля обзора с помощью оптико-механической системы с одновременным измерением угловых координат направленного излучения, приеме (детектировании) отраженных импульсов, оцифровывании принятых сигналов, вычислении дальности до объекта по времени прихода импульсов для каждого углового направления и формировании облака точек, определяющих угловые координаты и дальность каждой отражающей площадки (точки) объекта. Способ реализуется в устройствах наземных лазерных сканеров [Монография «Наземное лазерное сканирование»: В.А. Середович, А.В. Комиссаров, Д.В. Комиссаров, Т.А. Широкова. - Новосибирск: СГГА, 2009. - 261 с., стр. 9].
Недостатком способа является низкое быстродействие в связи с оптико-механическим сканированием.
Целью изобретения является повышение быстродействия при формировании облака точек, определяющих угловые координаты и дальность каждой отражающей площадки объекта.
Поставленная цель достигается тем, что объект облучают во множестве формируемых двумерной дифракционной решеткой направлений, перекрывающих в совокупности поле обзора и образующих матрицу смежных оптических каналов, при этом каждому оптическому каналу задают определенное угловое направление, сигнал в каждом оптическом канале поступает на соответствующий элемент матрицы приемников излучения, а дальность до точки объекта вычисляется в каждом из оптических каналов, при этом в устройстве, реализующем способ, лазерный излучатель снабжен расширителем пучка, за которым установлена двумерная дифракционная решетка, приемник излучения выполнен в виде матрицы элементов, оптически сопряженных через приемный объектив с дифракционной картиной, а блок управления излучением лазера выполнен в виде модулятора и генератора опорного сигнала, подключенного одновременно к модулятору и процессору.
Сущность предлагаемого изобретения поясняется чертежом, где обозначены: 1 - лазер, 2 - расширитель пучка, 3 - дифракционная решетка, 4 - дифракционная картина в пространстве объектов, 5 - приемный объектив, 6 - матрица приемников излучения, 7 - многоканальный фазометр, 8 - процессор, 9 - генератор опорного сигнала, 10 - модулятор.
Способ реализуется следующим образом.
В пространстве объектов с помощью лазерного излучателя создается множество пучков лазерного излучения, образующих пространственную структуру в виде сетки с равномерным расположением пучков по ортогональным направлениям.
Расширитель пучка 2 лазерного излучателя представляет собой телескопическую систему с увеличением, достаточным для облучения двумерной дифракционной решетки 3, состоящей из сетки отверстий, расположенных с одинаковым шагом (периодом) по ортогональным осям. Угол дифракции θ определяется размером отверстия и длиной волны излучения лазера 1. Дифракционная картина в пространстве объектов содержит максимумы, расположенные через определенный постоянный интервал. При прямоугольной форме отверстий со стороной а этот интервал равен в угловой мере . Угловое поле приемного объектива охватывает определенную часть дифракционной картины, определяемую размерами чувствительной поверхности матрицы приемников излучения и фокусным расстоянием объектива. Матрица 6 содержит m x n элементов, каждый из которых воспринимает поток излучения в определенном постоянном направлении. По отраженным от объекта пучкам излучения в каждом направлении измеряют дальность до отражающего элемента объекта. В результате измерений получают массив (облако) точек, для каждой из которых известны угловое направление и дальность.
Устройство работает следующим образом.
Генератор опорного сигнала 9 создает высокочастотный сигнал несущей частоты, который через модулятор 10 управляет излучением лазера. Лазер 1 излучает соответствующее непрерывное гармоническое излучение с постоянной начальной фазой. Пучок излучения лазера коллимируется расширителем пучка 2 и облучает дифракционную решетку 3. В результате дифракции в пространстве объектов создается дифракционная картина 4 в виде совокупности узких оптических пучков, облучающих объект. Отраженное от объекта излучение принимается объективом 5, в фокальной плоскости которого расположена матрица приемников излучения 6. При распространении излучения в каждом оптическом канале возникает разность фаз между опорным сигналом и сигналом, отраженным от объекта, пропорциональная дальности до соответствующего элемента объекта, отражающего сигнал. Сигналы с элементов матрицы поступают в многоканальный фазометр 7, измеряющий фазовый сдвиг в каждом канале. Процессор 8 вычисляет дальности до элементов поверхности объекта в каждом направлении, задаваемом углом дифракции, при этом определенные элементы матрицы приемников излучения принимают поток только соответствующего направления, а поэтому направление на элемент отражающей поверхности определяется по номеру элемента в матрице приемников излучения. Таким образом, процессор 8, формирует массив координат каждой поверхности объекта (дальность и угловые координаты по двум осям).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗМЕРЕНИЯ РАССТОЯНИЯ ДО ОБЪЕКТОВ, ИХ УГЛОВЫХ КООРДИНАТ И ВЗАИМНОГО РАСПОЛОЖЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2014 |
|
RU2575318C1 |
СИСТЕМА ИМПУЛЬСНОЙ ЛАЗЕРНОЙ ЛОКАЦИИ | 2019 |
|
RU2717362C1 |
ПРИЕМОПЕРЕДАЮЩЕЕ УСТРОЙСТВО ЛАЗЕРНОГО ЛОКАТОРА | 1986 |
|
RU2048686C1 |
Лазерный тренажер для обучения стрельбе из стрелкового оружия | 1990 |
|
SU1784829A1 |
ОПРЕДЕЛИТЕЛЬ МЕСТОПОЛОЖЕНИЯ ОБЪЕКТА (ВАРИАНТЫ) | 2003 |
|
RU2247321C1 |
СИСТЕМА ИМПУЛЬСНОЙ ЛАЗЕРНОЙ ЛОКАЦИИ | 2013 |
|
RU2528109C1 |
МНОГОКАНАЛЬНЫЙ КОНФОКАЛЬНЫЙ МИКРОСКОП (ВАРИАНТЫ) | 2014 |
|
RU2574863C1 |
УЧЕБНО-ДЕМОНСТРАЦИОННАЯ УСТАНОВКА ДЛЯ ИЗУЧЕНИЯ ОПТИЧЕСКИХ ЯВЛЕНИЙ И ТЕСТ-ОБЪЕКТ ДЛЯ ЕЕ ОСУЩЕСТВЛЕНИЯ | 2014 |
|
RU2567686C1 |
ЛАЗЕРНОЕ УСТРОЙСТВО ДЛЯ ИССЛЕДОВАНИЯ ПОЛЯ МИКРООБЪЕКТОВ С ЛУЧЕВЫМ ВОЗДЕЙСТВИЕМ (ВАРИАНТЫ) | 2002 |
|
RU2199729C1 |
ПРОГРАММИРУЕМЫЙ ПОЛЯРИТОННЫЙ СИМУЛЯТОР | 2020 |
|
RU2745206C1 |
Способ определения пространственного положения объектов обеспечивает облучение объекта через двумерную дифракционную решетку, что обеспечивает образование матрицы смежных оптических каналов. При этом каждому оптическому каналу задают определенное угловое направление. Сигнал в каждом оптическом канале поступает на соответствующий элемент матрицы приемников излучения, а дальность до точки объекта вычисляется в каждом из оптических каналов. При этом в устройстве, реализующем способ, лазерный излучатель снабжен расширителем пучка, за которым установлена двумерная дифракционная решетка. Приемник излучения выполнен в виде матрицы элементов, оптически сопряженных через приемный объектив с дифракционной картиной, а блок управления излучением лазера выполнен в виде модулятора и генератора опорного сигнала, подключенного одновременно к модулятору и процессору. Изобретение обеспечивает повышение быстродействия при формировании облака точек, определяющих угловые координаты и дальность каждой отражающей площадки объекта. 2 н.п. ф-лы, 1 ил.
1. Способ определения пространственного положения объектов, заключающийся в направлении излучения лазера в поле обзора, детектировании отраженных оптических сигналов, расчете дальностей до точек объектов в зоне обзора при одновременном измерении углового направления на эти точки и передаче результатов измерений и вычислений к внешним устройствам контроля, отличающийся тем, что объект облучают во множестве формируемых двумерной дифракционной решеткой направлений, перекрывающих в совокупности поле обзора и образующих матрицу смежных оптических каналов, при этом каждому оптическому каналу задают дифракционное угловое направление, сигнал в каждом оптическом канале поступает на элемент матрицы приемников излучения, соответствующий дифракционному направлению, а дальность до точки объекта вычисляют в каждом из оптических каналов.
2. Устройство для определения пространственного положения объектов, содержащее лазерный излучатель, приемную оптическую систему, приемник излучения, блок управления излучением лазера, процессор, внешний блок контроля, отличающееся тем, что лазерный излучатель снабжен расширителем пучка, за которым установлена двумерная дифракционная решетка, приемник излучения выполнен в виде матрицы элементов, оптически сопряженных через приемный объектив с дифракционной картиной, а блок управления излучением лазера выполнен в виде модулятора и генератора опорного сигнала, подключенного одновременно к модулятору и процессору.
US 20120242829 A1 27.09.2012 | |||
CN 102686975 A 19.09.2012 | |||
US 6028672 A1 22.02.2000 | |||
Приемное устройство лазерного локатора | 1990 |
|
SU1780073A1 |
JP2006322906 A 30.11.2006. |
Авторы
Даты
2016-04-10—Публикация
2014-11-10—Подача