Способ упрочнения твердеющего закладочного массива Российский патент 2017 года по МПК C04B28/00 E02D3/12 C04B111/34 

Описание патента на изобретение RU2606729C1

Изобретение относится к горной промышленности и может использоваться при разработке месторождений полезных ископаемых с закладкой выработанного пространства.

Известен способ, включающий подачу смеси с различным содержанием вяжущего в отработанную камеру, в котором закладку камер смесями, содержащими вяжущие вещества, производят в нижней ее части до уровня верхней границы отработки нижележащего горизонта, далее до отметки почвы бурового горизонта закладку осуществляют смесями без вяжущих, после усадки заложенного слоя, фильтрации и испарения воды по периметру камеры в усадочную щель размещают арматурную конструкцию, в заложенном массиве вдоль стенок камеры бурят скважины до отметки, находящейся ниже верхней отметки слоя закладки в нижней части камеры, часть массива между стенками камеры и стенками скважин разрушают, в скважины вставляют арматурные стержни с превышением их над уровнем заложенного массива, затем скважины и закладочную щель заливают раствором, содержащим вяжущие, после чего верхнюю часть камеры заполняют смесью с вяжущими (патент РФ №2367797, опубликован 20.09.2009г.).

Недостатком являются большая трудоемкость работ, неопределенность в величине прочности сформированного массива, большой расход дорогостоящей арматуры и неопределенность в уровне безопасности при ее размещении.

Известен способ упрочнения закладочного массива армировочным материалом в виде отрезков металлической проволоки. Способ заключается в том, что повышение устойчивости обнажений закладочного массива достигается одновременным размещением армировочного материала в виде отрезков металлической проволоки и твердеющей смеси в зоны, прилегающие к обнажаемым поверхностям закладочного массива (Авторское свидетельство СССР N 663855, опубликовано 25.05.1979 г.)

Недостатком данного способа является то, что армирующий материал, подаваемый в зоны обнажения массива, распределяется в закладочном массиве неравномерно, что ведет к снижению его прочности, так как в местах скопления металлических отрезков в результате их соприкосновения с агрессивной средой происходит их коррозия, которая разрушает структуру бетона.

Известен безусадочный состав для ремонта бетонных дорожных, мостовых и аэродромных покрытий (РФ 2362752 опубликован 27.07.2009 г.), который содержит 0-7% от массы вяжущего базальтовую микрофибру наномодифицированную, на поверхности волокон которой сорбированы ультрадисперсные углеродные наночастицы с линейным размером порядка 50-100 нм, в количестве 0,005-0,010 мас.%, причем воды содержится 0,1-0,2% от массы вяжущего.

Недостатком является большая трудоемкость работ из-за большого количества компонентов, невозможность механизированной подачи материала в выработанное пространство и равномерного растекания в выработанном пространстве.

Наиболее близким является способ упрочнения закладочного массива, включающий размещение в формируемом массиве армирующих элементов одновременно с твердеющей смесью, отличающийся тем, что с целью повышения сопротивления закладочного массива разрушению при совместном воздействии знакопеременными растягивающими и сжимающими усилиями в качестве армирующих элементов применяют базальтовое волокно в количестве 4 - 5% от массы твердеющей смеси (патент РФ №2019712, опубликован 15.09.1994 г.).

Недостатком является большое количество армирующих элементов, которое ограничивает подвижность смеси, исключая ее транспортирование по трубам и растекание в заполняемой камере. Данная смесь может доставляться в камеру только ковшевыми погрузчиками или самосвалами и укладываться вручную, что приведет к усложнению технологической схемы, удорожанию работ и снижению безопасности.

Задачей предлагаемого изобретения является обеспечение безопасных условий горных работ при увеличении прочности закладки на растяжение.

Для решения поставленной задачи предложен способ упрочнения закладочного массива, включающий размещение в формируемом массиве армирующих элементов одновременно с твердеющей смесью, причем в качестве армирующих элементов применяют микрофибру базальтовую модифицированную (МБМ) в количестве 7,1% от массы вяжущего вещества.

Технический результат заключается в механизированной подаче армирующего материала, создании безопасных условий горных работ при увеличении прочности закладочного массива при растяжении и трещиностойкости при сохранении консистенции смеси, пригодной для транспортирования по трубам и растекания в выработанном пространстве.

МБМ (ТУ 5761-014-13800624-2004) производства ЗАО «Астрин-Холдинг» состоит из (в % по массе):

- ваты базальтовой с органической пропиткой – 99,3-99,6;

- наномодификатора −0,0001-0,01;

- воды – 0,3-0,5.

В качестве наномодификатора используют углеродный наномодификатор фуллероидного типа по ТУ 2166-001-13800624-2003.

Основные характеристики МБМ приведены в таблице 1.

Таблица 1 №п/п Наименование показателя Норма 1 Средний диаметр волокна, мкм 8-10 2 Средняя длина волокна, мкм 100-500 3 Содержание неволокнистых включений, % по массе, не более 10 4 Влажность, % по массе, не более 1 5 Плотность насыпная, кг/м3, не более 800 6 Содержание органических веществ, % по массе, не более 2

Способ упрочнения закладочного массива осуществляется следующим образом. Искусственный массив формируется из твердеющей закладочной смеси, в которую перед ее укладкой в выработанное пространство подают армирующие элементы – микрофибру базальтовую модифицированную МБМ. Твердеющая смесь транспортируется к месту формирования массива по трубам и подается в камеру. При растекании закладочной смеси по выработанному пространству волокна МБМ распределяются равномерно во всем объеме будущего искусственного массива и блокируют рост трещин, образованию которых способствует низкая прочность бетона при растяжении. Это позволяет существенно улучшить прочность при растяжении.

Для проверки работоспособности предлагаемого способа была изготовлена модель закладочного массива, состоящего из вяжущего, заполнителя, суперпластификатора, воды. Изготовили две серии массива: В первой серии (контрольной) микрофибру базальтовую модифицированную МБМ не добавляли. Во второй серии в смесь вводили 7,1% от массы вяжущего вещества микрофибры базальтовой модифицированной МБМ. Из обеих серий массива были сформированы образцы. По истечении 90 суток образцы 40×40×160 мм были испытаны на прочность при растяжении при изгибе с использованием электронной испытательной машины Инстрон 5882.

Кроме того, производилась оценка прочности образцов при растяжении в возрасте 180 суток по методу раскалывания с использованием электронной испытательной машины Инстрон 5882.

Значения прочности при растяжении, полученные данным методом, во всех случаях очень близко совпадают со значениями прочности при осевом растяжении. (Стольников В.В., Литвинова Р.Е. Трещиностойкость бетона. – М: Издательство Энергия, 1972. – 113 с. –39-41 с.).

Данные испытаний приведены в таблице 2.

Таблица 2
Экспериментальные данные
№серии Количество МБМ, % от массы вяжущего вещества Диаметр пятна растекания по Суттарду, мм (растекаемость) Предел прочности при растяжении при изгибе, МПа Предел прочности при растяжении методом раскалывания, МПа Коэффициент трещиностойкости 1 (контрольная) 0 210 2,685 0,399 0,431 2 (предлагаемая) 7,1 174 3,06 0,540 0,547

Для обеспечения устойчивого режима транспортирования по трубам и равномерной укладки в выработанном пространстве регламентом рекомендуется следующая растекаемость смеси 13-20 см (Монтянова А.Н. 2009. Формирование закладочных массивов при разработке алмазных месторождений в криолитозоне. М., Горная книга, 597 с., стр.308).

Из таблицы 2 следует, что поставленная задача обеспечения безопасных условий горных работ и механизированной подачи армирующего материала при увеличении прочности закладки на растяжение и трещиностойкости массива при сохранении консистенции смеси, пригодной для транспортирования по трубам и растекания в выработанном пространстве, достигается при введении в твердеющую смесь микрофибры базальтовой модифицированной МБМ в количестве 7,1% от массы вяжущего вещества.

Похожие патенты RU2606729C1

название год авторы номер документа
СПОСОБ МИНИМИЗАЦИИ УСАДКИ ЗАКЛАДОЧНОГО МАССИВА 2015
  • Ермолович Елена Ахмедовна
  • Ермолович Олег Вячеславович
  • Кирилов Александр Николаевич
  • Ермолович Елена Анатольевна
RU2598107C1
Способ упрочнения закладочного массива 2023
  • Ермолович Олег Вячеславович
RU2813409C1
КОМПОЗИЦИОННЫЙ ЗАКЛАДОЧНЫЙ МАТЕРИАЛ 2014
  • Ермолович Олег Вячеславович
  • Ермолович Елена Ахмедовна
  • Кириллов Александр Николаевич
  • Ермолович Елена Анатольевна
RU2565290C1
СПОСОБ УПРОЧНЕНИЯ ЗАКЛАДОЧНОГО МАССИВА 2014
  • Ермолович Олег Вячеславович
  • Ермолович Елена Ахмедовна
RU2555996C1
Способ минимизации относительной деформации усадки твердеющего закладочного массива 2015
  • Ермолович Елена Ахмедовна
  • Ермолович Олег Вячеславович
  • Кирилов Александр Николаевич
RU2606738C1
СПОСОБ ФОРМИРОВАНИЯ ЗАКЛАДОЧНОГО МАССИВА 2010
  • Ермолович Елена Ахмедовна
RU2436962C1
СПОСОБ УПРОЧНЕНИЯ ЗАКЛАДОЧНОГО МАССИВА 1991
  • Пономарев Леонид Федорович[Kz]
  • Крупник Леонид Андреевич[Kz]
  • Амирханов Заур Сиражевич[Kz]
  • Мандровский Александр Михайлович[Kz]
  • Омарбаев Нураш Омарбаевич[Kz]
  • Дериглазов Владимир Николаевич[Kz]
  • Шукман Владимир Романович[Kz]
RU2019712C1
Закладочная смесь с наномодифицированной добавкой 2021
  • Ермолович Елена Ахмедовна
  • Хайрутдинов Альберт М
  • Тюляева Юлия Сергеевна
  • Конгар-Сюрюн Чейнеш Буяновна
RU2754908C1
Способ упрочнения гидрозакладочного массива 2018
  • Ермолович Елена Ахмедовна
  • Донецкий Сергей Владимирович
  • Ермолович Олег Вячеславович
RU2675118C1
СПОСОБ ПРИГОТОВЛЕНИЯ ДИСПЕРСНО-АРМИРОВАННОГО СТРОИТЕЛЬНОГО РАСТВОРА ДЛЯ МОНОЛИТНЫХ ПОЛОВ 2016
  • Белова Татьяна Константиновна
  • Гурьева Виктория Александровна
  • Сулейманов Руслан Джалилевич
RU2617812C1

Реферат патента 2017 года Способ упрочнения твердеющего закладочного массива

Изобретение относится к горной промышленности и может использоваться при разработке месторождений полезных ископаемых с закладкой выработанного пространства. Технический результат - обеспечение безопасных условий горных работ при увеличении прочности закладки на растяжение. В способе упрочнения закладочного массива, включающем размещение в формируемом массиве армирующих элементов одновременно с твердеющей смесью, причем в качестве армирующих элементов применяют микрофибру базальтовую модифицированную (МБМ) в количестве 7,1% от массы вяжущего вещества. Микрофибра содержит, масс.% вату базальтовую с органической пропиткой - 99,3-99,6, углеродный наномодификатор фуллероидного типа - 0,00001-0,01, вода - остальное. 2 табл.

Формула изобретения RU 2 606 729 C1

Способ упрочнения закладочного массива, включающий размещение в формируемом массиве армирующих элементов одновременно с твердеющей смесью, отличающийся тем, что в качестве армирующих элементов применяют микрофибру базальтовую модифицированную в количестве 7,1% от массы вяжущего вещества, причем указанная микрофибра содержит, в масс. %:

Вата базальтовая с органической пропиткой 9,3-99,6 Углеродный наномодификатор фуллероидного типа 0,0001-0,01 Вода 0,3-0,5

Документы, цитированные в отчете о поиске Патент 2017 года RU2606729C1

СПОСОБ УПРОЧНЕНИЯ ЗАКЛАДОЧНОГО МАССИВА 1991
  • Пономарев Леонид Федорович[Kz]
  • Крупник Леонид Андреевич[Kz]
  • Амирханов Заур Сиражевич[Kz]
  • Мандровский Александр Михайлович[Kz]
  • Омарбаев Нураш Омарбаевич[Kz]
  • Дериглазов Владимир Николаевич[Kz]
  • Шукман Владимир Романович[Kz]
RU2019712C1
СОСТАВ ЗАКЛАДОЧНОЙ СМЕСИ 2009
  • Ермолович Елена Ахмедовна
  • Сергеев Сергей Валентинович
RU2396435C1
БЫСТРОТВЕРДЕЮЩИЙ БЕЗУСАДОЧНЫЙ СОСТАВ ДЛЯ РЕМОНТА БЕТОННЫХ ДОРОЖНЫХ, МОСТОВЫХ И АЭРОДРОМНЫХ ПОКРЫТИЙ 2007
  • Васильев Юрий Эммануилович
  • Винаров Александр Юрьевич
  • Пономарев Андрей Николаевич
  • Шитиков Евгений Сергеевич
RU2362752C1
US 4419135 A, 06.12.1983
US 5038863 A1, 13.08.1991.

RU 2 606 729 C1

Авторы

Ермолович Елена Ахмедовна

Ермолович Олег Вячеславович

Кирилов Александр Николаевич

Ермолович Елена Анатольевна

Даты

2017-01-10Публикация

2015-10-13Подача