СПОСОБ ПОЛУЧЕНИЯ КСЕНОТРАНСПЛАНТАТА ДЛЯ ОФТАЛЬМОХИРУРГИИ Российский патент 2017 года по МПК A61F2/00 

Описание патента на изобретение RU2607185C1

Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано для получения трансплантат-коллагенового материала для выполнения склеропластических хирургических вмешательств при лечении прогрессирующей миопии средней и высокой степени.

Известен способ обработки склеропластического материала, получаемого из соединительной ткани животных и человека, который включает их очистку от механических примесей и крови, отмывку холодной водой, нарезку на полоски нужного размера с перфорациями, помещение в 6%-ный раствор перекиси водорода от 1 до 3-х часов, затем в 4М раствор мочевины не менее 15 часов, инкубацию в 2М растворе хлорида натрия, отмывку материала, помещение материала в смесь хлороформ: этанол в соотношении 1:1, отмывку водой, лиофилизацию и стерилизацию радиационным методом в дозе 1,7-2,5 Мрад [патент RU №2234289, 2004 г.]. Однако данный способ обработки не обеспечивает максимального удаления гликопротеинов и растворимых белков, определяющих антигенные свойства биологического материала.

Известен метод получения биоматериала для использования в офтальмологии посредством обработки перикарда сельскохозяйственных животных, который механически очищают, заливают 0,9% раствором хлорида натрия и дистиллированной водой, после чего помещают в раствор аммиака и этилового спирта, затем отмывают водой и заливают этиловым спиртом [патент RU №2054283, 1996 г.]. Следует отметить, что этот метод не всегда может обеспечивать полное освобождение материала от антигенов коллагена, липидов, фосфолипидов, липопротеидов и других жиросодержащих веществ, которые присутствуют в указанных тканях в больших количествах и снижают его биосовместимость, вследствие чего в послеоперационном периоде повышается риск возникновения аутоиммунных реакций.

Прототипом изобретения является способ получения материала для склеропластики [патент RU №2281061, 2006 г.], при котором перикард крупного рогатого скота после механической очистки обрабатывают 10% раствором аммиака в течение 4-5 часов, промывают дистиллированной водой, четырежды замораживают при температуре минус 10-12°С и размораживают при температуре +40+45°С, в течение 7,5 часов обрабатывают 6%-ным раствором перекиси водорода при +15°С, после разрезания материала обрабатывают его ультразвуком и повторяют всю процедуру обработки при перемешивании с использованием перемешивающего устройства. Затем материал дегидратируют в спиртах восходящей концентрации от 30 до 70 объемных процентов, раскладывают во флаконы с 70% этиловым спиртом и стерилизуют ионизирующим излучением в дозе 1,5 Мрад. Данный способ обработки позволяет освободиться от нежелательных антигенных свойств материала. Однако существенным недостатком последнего является его нестабильные прочностно-механические характеристики, значительно затрудняющие выполнение склеропластических хирургических вмешательств.

Задачей изобретения является создание трансплантат-коллагенового материала с улучшенными биомеханическими свойствами для склеропластических хирургических вмешательств при лечении прогрессирующей миопии средней и высокой степени.

Технический результат - повышение прочностно-механических характеристик и биосовместимости ксенотрансплантата.

Указанный технический результат достигается тем, что в способе получения ксенотрансплантата для офтальмохирургии из перикарада крупного рогатого скота, включающем механическую очистку, фрагментацию биоматериала, двукратную обработку 10% раствором аммиака в течение 3-4 часов, промывание водой очищенной, многократное замораживание и размораживание биоматериала, двукратную обработку 6%-ным раствором перекиси водорода, дегидратацию в спиртах восходящей концентрации от 30 до 70 об. %, расфасовку во флаконы с 70%-ным этиловым спиртом и стерилизацию ионизирующим излучением дозой 1,5 Мрад, согласно изобретению после первого замораживания и размораживания дополнительно проводят обработку 15% раствором муравьиной кислоты в течение 1,5 часов при перемешивании с дальнейшим замораживанием и размораживанием; затем проводят обработку 6% раствором перекиси водорода в течение 6 часов, после этого проводят дополнительную фрагментацию биоматериала, повторно обрабатывают биоматериал 10% раствором аммиака в течение 3 часов с дальнейшим замораживанием и размораживанием, после чего повторно проводят обработку 15% раствором муравьиной кислоты в течение 1 часа при перемешивании с дальнейшим замораживанием и размораживанием, затем повторно проводят обработку 6% раствором перекиси водорода в течение 1,5 часов, а перед дегидратацией дополнительно проводят ультрафиолетовое сшивание коллагена биоматериала путем обработки его 0,5% раствором рибофлавина в течение 20 минут и последующим ультрафиолетовым облучением мощностью 5 мВт/см2 при длине волны 370 нм в течение 20 мин. При этом для облучения используют диодный ультрафиолетовый источник ROITHNER LASER TECHNIK марки UVLED 370-10Е.

Предлагаемый способ получения трансплантат-коллагенового материала для офтальмохирургии осуществляется следующим образом.

1. Используют 1 кг перикарда крупного рогатого скота, полученного в течение 2 часов после забоя и доставленного в термоконтейнерах.

2. Проводят механическую очистку материала от жировых отложений, сгустков крови, сосудов и нарезают его на пластины 10×15 см.

3. Материал обрабатывают 10% раствором аммиака при перемешивании в течение 4-х часов с 5-кратной сменой раствора с использованием устройства перемешивающего ПЭ-6410М.

4. Промывают водой очищенной в течение 30 мин с 3-кратной сменой воды.

5. Замораживают материал при температуре минус 12-16°С в морозильной камере холодильника и размораживают в теплой воде при температуре +35+45°С.

6. Материал обрабатывают 15% раствором муравьиной кислоты однократно в течение 1,5 часов на перемешивающем устройстве ПЭ-6410М.

7. Промывают водой очищенной в течение 4-х часов с 6-кратной сменой воды.

8. Замораживают материал при температуре минус 12-16°С в морозильной камере холодильника и размораживают в теплой воде при температуре +35+45°С.

9. Обрабатывают материал 6% раствором перекиси водорода в течение 6-ти часов с 3-кратной сменой раствора.

10. Промывают материал водой очищенной в течение 4-х часов с 10-кратной сменой воды на перемешивающем устройстве ПЭ-6410М.

11. Обрабатывают материал ультразвуком в течение 30 мин на приборе Ретона УСУ-0707 при частоте колебаний излучателей 120 кГц.

12. Нарезают материал на полоски размером (7×25) мм и (10×100) мм.

13. Повторно обрабатывают материал 10% раствором аммиака в течение 3-х часов с 5-кратной сменой раствора на перемешивающем устройстве ПЭ-6410М.

14. Повторно промывают водой очищенной в течение 30 мин с 3-кратной сменой воды.

15. Повторно замораживают материал при температуре минус 12-16°С в морозильной камере холодильника и размораживают в теплой воде при температуре +35+45°С.

16. Повторно обрабатывают материал 15% раствором муравьиной кислоты однократно в течение 1 часа на перемешивающем устройстве ПЭ-6410М.

17. Повторно промывают водой очищенной в течение 3-х часов с 8-кратной сменой воды.

18. Повторно замораживают материал при температуре минус 12-16°С в морозильной камере холодильника и размораживают в теплой воде при температуре +35+45°С.

19. Повторно обрабатывают материал 6%-ным раствором перекиси водорода в течение 1,5 часов с 3-кратной сменой раствора на перемешивающем устройстве ПЭ-6410М.

20. Промывают водой очищенной в течение 4-х часов с 10-кратной сменой воды на перемешивающем устройстве ПЭ-6410М.

21. Проводят ультрафиолетовое сшивание (кросслинкинг) коллагена материала для повышения его биопластических и прочностно-механических свойств. Для этого пластинки материала обрабатывают 0,5% раствором рибофлавина в течение 20 минут, после чего избыток рибофлавина удаляют. Помещают материал в чашки Петри и облучают от диодного ультрафиолетового источника ROITHNER LASERTECHNIK марки UVLED370-10E при длине волны 370 нм мощностью 5 мВт/см в течение 20 мин.

22. Материал дегидратируют, используя спирт этиловый в восходящих концентрациях от 30 до 70 объемных процентов, в каждом растворе спирта выдерживают 24 часа на перемешивающем устройстве.

23. Расфасовывают материал во флаконы с 70%-ным этиловым спиртом, укупоривают.

24. Проводят стерилизацию ионизирующим излучением дозой 1,5 Мрад на установке Со60.

25. Проводят бактериологическое исследование образцов материала.

Проведение кросслинкинга ксенотрансплантата приводит к образованию дополнительных химических связей между фибриллами коллагена, что значительно улучшает биомеханические свойства материала [Wollensak G., Spoerl Е., Seiler Т. Riboflavin / ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus // Am. J. Ophthalmol. 2003. Vol. 135. - N5. - P. 620-627; Wollensak G., Iomdina E., Dittert D.D., Salamatina O., Stoltenburg G. Cross-linking of sclera collagen in the rabbit using riboflavin and UVA // Acta. Ophthalmol. Scand. 2005. Vol.83. - N 4. - P. 477-482]. Кроме того, УФ-облучение обладает бактерицидным действием и элиминирует золотистый стафилококк, синегнойную палочку, стрептококк, пневмококк и др. [Richoz О., Kling S., Hoogewoud F., Hammer A., Tabibian D., Francois P., Schrenzel J., Hafezi F. Antibacterial efficacy of accelerated photoactivated chromophore for keratitis-corneal collagen crosslinking (PACK-CXL) // J. Refract. Surg. 2014. Vol.30. - N 12. - P. 850-854].

Изучение биомеханических свойств экспериментальных образцов предлагаемого трансплантат-коллагенового материала проводили на разрывной установке, совмещенной с персональным компьютером. В группу контроля включили ксенотрансплантаты, необработанные рибофлавин-УФ-облучением. После предварительного выдерживания в течение 2 минут образцов материала в физиологическом растворе, нагретом до 45°С, измеряли деформацию и растяжение на указанной разрывной установке с последующим расчетом модуля продольной упругости (модуля Юнга) по формуле

m - масса образца (кг),

g - ускорение свободного падения (м/с2),

l0 - длина образца до растяжения (мм),

S - площадь поперечного сечения образца (мм2),

Δl0 - приращение длины образца (мм).

Величина модуля Юнга для контрольных образцов составила 6,3±1,0 мПа, тогда как для опытных - 11,5±3,0 мПа, т.е. с помощью предлагаемого способа обработки ксенотрансплантатов повышаются прочностно-механические свойства материала в 1,8 раза.

Клинические свойства ксенотрансплантата исследованы при проведении экспериментальной склеропластической операции по Хатминскому на 8 кроликах породы Шиншилла весом от 2,8-3,2 кг. Животные были разделены на 2 группы (по 4 кролика в каждой). В контрольной группе для операции использовали ксенотрансплантат без рибофлавин-УФ обработки; в опытной - предлагаемый материал, дополнительно насыщенный 0,5% рибофлавиноми УФ-облученный в течение 20 мин при длине волны 370 нм и мощности 5 мВт/см.

Эксперименты проводились в условиях операционной вивария. В качестве анестезиологического пособия использовали препарат «Ксилазин» 2% внутримышечно в дозе 0,2 мл/кг в сочетании с местной анестезией 0,4% раствором оксибупрокаина («Инокаин»).

После двукратной обработки операционного поля раствором спирта и наложения блефаростата предварительно размечали участки предполагаемых разрезов конъюнктивы в 6-7 мм от лимба в нижневнутреннем и верхненаружном квадрантах. Производили разрезы конъюнктивы около 5 мм и обнажали склеру в 6-7 мм от лимба. Затем под мышцы в косом направлении заводили трансплантаты за экватор поперек мышц. Из одного разреза полоски трансплантат-коллагенового материала вставляли поочередно под две соседние мышцы. На конъюнктиву накладывали непрерывные швы.

В контрольной группе недостаточная механическая стабильность ксенотрансплантатов затрудняла проведение хирургических манипуляций, в частности, при «заведении» трансплантата к заднему полюсу глазного яблока. Использование предлагаемых трансплантатов, благодаря стабильным механическим свойствам (эластичность, сохранение придаваемой формы), облегчало выполнение склеропластики.

На 2-й день после операции при осмотре оперированных глаз кроликов отмечали отек и гиперемию конъюнктивы, которые были наиболее выраженными в контрольной группе.

На 3-4-е сутки после операции на фоне стандартной противовоспалительной и антибактериальной терапии у кроликов опытной группы сохранялась лишь легкая гиперемия конъюнктивы, тогда как у кроликов контрольной группы оставался умеренный отек конъюнктивы. У всех 8-ми животных положение трансплантатов оставалось стабильным, оптические среды глаза были прозрачными, рефлекс с глазного дна розовым. На 7 сутки у всех кроликов сняты швы с конъюнктивы. При биомикроскопии и офтальмоскопии на 15 и 30 сутки после операции в обеих группах глаза были спокойными, конъюнктива над трансплантатами бледно-розовой, трансплантаты сохраняли правильное положение.

Каких-либо осложнений, связанных с использованием предлагаемого трансплантат-коллагенового материала, не отмечалось.

Кролики были выведены из эксперимента с помощью передозировки препарата для наркоза («Ксилазин»).

Биомикроскопия глаз животных после энуклеации показала сохранение правильного положения трансплантатов на склере в обеих группах - спереди они находились в области мест прикрепления прямых мышц к склере, сзади - в 2-х мм от зрительного нерва. Сращение со склерой отмечалось по всей площади прилегания трансплантата.

При гистологическом исследовании глаз животных опытной группы, энуклеированных на 15 сутки, в толще склеры определялся трансплантат, окруженный умеренной и местами слабо выраженной воспалительной реакцией, новообразованными сосудами и выраженным отеком коллагеновых структур, на 30 сутки в срезе склеры определялся трансплантат, окруженный умеренным количеством лимфоцитов, моноцитов, плазматических клеток и единичных многоядерных клеток. Процессы приживления и структурной организации предлагаемых трансплантатов характеризовались образованием прочной волокнистой соединительной ткани, способствующей укреплению склеры.

В группе контроля через 2 недели после операции в толще склеры микроскопически определялись элементы имплантата (перикард), представленного гомогенной волокнистой тканью, между ксенотрансплантатом и склерой отмечалась выраженная воспалительная реакция, представленная массивным лимфо-макрофагальным инфильтратом, с наличием большого количества фибробластов. Через месяц в срезе склеры определялся имплантат (перикард) в виде грубоволокнистой структуры с признаками межуточного отека, окруженный массивным воспалительным инфильтратом, местами с формированием грануляционной ткани, клетки воспалительного инфильтрата проникали между волокнами трансплантата.

Таким образом, морфологическое изучение энуклеированных глаз животных показало приживление склеральных трансплантатов опытной и контрольной групп и подтвердило лучшую биологическую совместимость трансплантат-коллагенового материала, обработанного предлагаемым нами способом. Благодаря дополнительной УФ-обработке биоматериала при гистологическом исследовании между ксенотрансплантатом и склерой отмечалась умеренная, местами слабо выраженная воспалительная реакция, тогда как в контрольной группе присутствовал массивный лимфо-макрофагальный инфильтрат. Рибофлавин-УФ-обработанный ксенотрансплантат, обладая улучшенными биомеханическими характеристиками, облегчает проведение хирургических манипуляций, обеспечивает стабилизацию патологических процессов в склере и может использоваться для склеропластических операций при прогрессирующей миопии средней и высокой степени.

.

Похожие патенты RU2607185C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КСЕНОТРАНСПЛАНТАТА С МОДУЛИРУЕМЫМИ ПАРАМЕТРАМИ ЖЕСТКОСТИ ДЛЯ ОФТАЛЬМОХИРУРГИИ 2018
  • Бикбов Мухаррам Мухтарамович
  • Халимов Азат Рашидович
  • Шевчук Наталья Евгеньевна
  • Зайдуллин Ильдар Саитгалиевич
  • Гильманшин Тимур Риксович
  • Бикметов Ильдар Радикович
RU2698041C1
СПОСОБ ПОЛУЧЕНИЯ КСЕНОТРАНСПЛАНТАТОВ ДЛЯ ОФТАЛЬМОЛОГИИ 2005
  • Багров Сергей Николаевич
  • Ронкина Тамара Ильинична
  • Малышев Владимир Борисович
  • Петренко Александр Егорович
RU2281061C1
Способ получения гомосклерального трансплантата 2016
  • Киселев Александр Владимирович
  • Сахнов Сергей Николаевич
  • Заболотний Александр Григорьевич
  • Карданова Лейла Муаедовна
RU2627453C1
СПОСОБ ПОЛУЧЕНИЯ БИОМАТЕРИАЛА ДЛЯ ИСПОЛЬЗОВАНИЯ В ОФТАЛЬМОЛОГИИ "СКЛЕРОПЛАНТ" 2005
  • Маклакова Ирина Александровна
  • Гаврилова Татьяна Марковна
RU2290899C1
БИОМАТЕРИАЛ ДЛЯ ХИРУРГИИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2021
  • Шангина Ольга Ратмировна
  • Хасанов Руслан Алмазович
  • Кадыров Радик Завилович
  • Родионов Олег Вячеславович
  • Мусина Ляля Ахияровна
RU2780831C1
СПОСОБ ПОЛУЧЕНИЯ БИОМАТЕРИАЛА ДЛЯ ИСПОЛЬЗОВАНИЯ В ОФТАЛЬМОЛОГИИ 2002
  • Тахчиди Х.П.
  • Панасюк А.Ф.
  • Ларионов Е.В.
  • Новиков С.В.
  • Леонтьева Г.Д.
  • Кобелевский А.В.
RU2234289C2
СПОСОБ ПОЛУЧЕНИЯ ГУБЧАТОГО БИОМАТЕРИАЛА ДЛЯ ПЛАСТИЧЕСКОЙ И РЕКОНСТРУКТИВНОЙ ХИРУРГИИ 2006
  • Мулдашев Эрнст Рифгатович
  • Хасанов Руслан Алмазович
  • Шангина Ольга Ратмировна
  • Нигматуллин Рафик Талгатович
  • Хасанова Юлия Саитгалеевна
RU2310476C1
ТРАНСПЛАНТАТ ДЛЯ СКЛЕРОПЛАСТИКИ 1999
  • Тарутта Е.П.
  • Иомдина Е.Н.
  • Брагин В.Е.
  • Быканов А.Н.
  • Андреева Л.Д.
  • Лазук А.В.
  • Елисеева Е.В.
  • Шустеров Ю.А.
RU2161021C2
СПОСОБ ПОЛУЧЕНИЯ КОСТНОГО АЛЛОТРАНСПЛАНТАТА ДЛЯ ЗАМЕЩЕНИЯ ДЕФЕКТОВ КОСТЕЙ ЧЕРЕПА 2004
  • Лекишвили Михаил Васильевич
  • Васильев Максим Геннадьевич
  • Баракина Оксана Юрьевна
  • Горбунова Елена Давидовна
  • Панкратов Александр Сергеевич
RU2279281C2
Способ получения биологически активных имплантатов 2016
  • Зайцев Владимир Валентинович
  • Бакулева Наталия Петровна
  • Чащин Иван Сергеевич
  • Васильев Максим Геннадьевич
  • Мартынов Алексей Дмитриевич
  • Поважный Дмитрий Борисович
  • Ханжин Максим Сергеевич
  • Лукина Юлия Сергеевна
RU2619870C1

Реферат патента 2017 года СПОСОБ ПОЛУЧЕНИЯ КСЕНОТРАНСПЛАНТАТА ДЛЯ ОФТАЛЬМОХИРУРГИИ

Предлагаемое изобретение относится к медицине, в частности к офтальмологии, и может быть использовано для получения трансплантат-коллагенового материала для выполнения склеропластических хирургических вмешательств при лечении прогрессирующей миопии средней и высокой степени. Проводят механическую очистку, обработку 10% раствором аммиака в течение 4 часов, промывание водой очищенной, многократное замораживание и размораживание биоматериала, обработку 6% раствором перекиси водорода, фрагментацию биоматериала, дегидратацию в спиртах восходящей концентрации от 30 до 70 об.%, расфасовку во флаконы с 70% этиловым спиртом и стерилизацию ионизирующим излучением дозой 1,5 Мрад. Дополнительно проводят двухстадийную обработку раствором 15% муравьиной кислоты, сначала после первого замораживания и размораживания в течение 1,5 часов при перемешивании, затем после повторного замораживания и размораживания в течение 1 часа при перемешивании. Кроме этого перед дегидратацией дополнительно проводят ультрафиолетовое сшивание коллагена биоматериала путем обработки его 0,5% раствором рибофлавина в течение 20 минут и последующего ультрафиолетового облучения мощностью 5 мВт/см2 при длине волны 370 нм в течение 20 мин. Использование изобретения повышает прочностно-механические характеристики и биосовместимость ксенотрансплантата. 1 з.п. ф-лы.

Формула изобретения RU 2 607 185 C1

1. Способ получения ксенотрансплантата для офтальмохирургии из перикарада крупного рогатого скота, включающий механическую очистку, фрагментацию биоматериала, двукратную обработку 10% раствором аммиака в течение 3-4 часов, промывание водой очищенной, многократное замораживание и размораживание биоматериала, двукратную обработку 6% раствором перекиси водорода, дегидратацию в спиртах восходящей концентрации от 30 до 70 об.%, расфасовку во флаконы с 70% этиловым спиртом и стерилизацию ионизирующим излучением дозой 1,5 Мрад, отличающийся тем, что после первого замораживания и размораживания дополнительно проводят обработку 15% раствором муравьиной кислоты в течение 1,5 часов при перемешивании с дальнейшим замораживанием и размораживанием; затем проводят обработку 6% раствором перекиси водорода в течение 6 часов, после этого проводят дополнительную фрагментацию биоматериала, повторно обрабатывают биоматериал 10% раствором аммиака в течение 3 часов с дальнейшим замораживанием и размораживанием, после чего повторно проводят обработку 15% раствором муравьиной кислоты в течение 1 часа при перемешивании с дальнейшим замораживанием и размораживанием, затем повторно проводят обработку 6% раствором перекиси водорода в течение 1,5 часов, а перед дегидратацией дополнительно проводят ультрафиолетовое сшивание коллагена биоматериала путем обработки его 0,5% раствором рибофлавина в течение 20 минут и последующим ультрафиолетовым облучением мощностью 5 мВт/см при длине волны 370 нм в течение 20 мин.

2. Способ по п. 1, отличающийся тем, что для облучения используют диодный ультрафиолетовый источник ROITHNER LASER TECHNIK марки UVLED 370-10Е.

Документы, цитированные в отчете о поиске Патент 2017 года RU2607185C1

СПОСОБ ПОЛУЧЕНИЯ КСЕНОТРАНСПЛАНТАТОВ ДЛЯ ОФТАЛЬМОЛОГИИ 2005
  • Багров Сергей Николаевич
  • Ронкина Тамара Ильинична
  • Малышев Владимир Борисович
  • Петренко Александр Егорович
RU2281061C1
ИСКУССТВЕННАЯ РОГОВИЦА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2006
  • Ксу Гуофень
RU2421185C2
СПОСОБ ПОЛУЧЕНИЯ БИОМАТЕРИАЛА ДЛЯ ИСПОЛЬЗОВАНИЯ В ОФТАЛЬМОЛОГИИ 2002
  • Тахчиди Х.П.
  • Панасюк А.Ф.
  • Ларионов Е.В.
  • Новиков С.В.
  • Леонтьева Г.Д.
  • Кобелевский А.В.
RU2234289C2
T.CHANG et al., Towards and artifical cornea: surface modification of optically clear, oxygen permeable soft contact lens materials by ammonia plasma modification technique for the enhanced attachment and growth of corneal epithelial cells
Biomat, Art
Cells, Art
Org., 1990, 18(5), p.643-655, реферат.

RU 2 607 185 C1

Авторы

Бикбов Мухаррам Мухтарамович

Халимов Азат Рашидович

Зайнутдинова Гузель Халитовна

Кудоярова Ксения Игоревна

Лукьянова Екатерина Эдуардовна

Даты

2017-01-10Публикация

2015-09-15Подача