Деформируемый сплав на основе алюминия Российский патент 2017 года по МПК C22C21/00 

Описание патента на изобретение RU2612475C1

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов, преимущественно в виде прессованных прутков, в качестве электропроводного конструкционного материала преимущественно для токопроводящих элементов конструкции в авиакосмической технике, судостроении, транспортном машиностроении и других отраслях промышленности, а также в качестве заготовки для получения электропроводов.

Известен деформируемый сплав на основе алюминия, применяемый в качестве электропроводного материала, содержащий 99,5 мас.% алюминия и примеси в количестве не более, мас.%: железо 0,3, кремний 0,3, медь 0,05, цинк 0,1, титан 0,15, марганец 0,025, магний 0,05, примеси в сумме 0,7 (см. Алюминиевые сплавы. Применение алюминиевых сплавов. Справочное руководство. М.: Металлургия. 1972. С. 238).

Однако существующий сплав имеет низкие прочностные свойства.

Известен деформируемый сплав на основе алюминия, применяемый в качестве электропроводного материала (см. патент RU №2416658, МПК C22C 21/06 - прототип), следующего химического состава, мас.%:

Магний 0,55-0,85 Скандий 0,2-0,4 Гафний 0,02-0,05 Иттрий 0,0001-0,005 Алюминий Остальное

Однако известный сплав имеет недостаточно высокие прочностные свойства, что утяжеляет токопроводящие элементы конструкции и снижает тем самым характеристики весовой отдачи конструкции в целом.

Предлагается деформируемый сплав на основе алюминия, содержащий магний и скандий, который дополнительно содержит цирконий, кальций, железо, кремний и неизбежные примеси, основными из которых являются медь, цинк, марганец и хром, при следующем соотношении компонентов, мас.%:

Магний 0,45-0,6 Скандий 0,1-0,15 Цирконий 0,1-0,15 Кальций 0,02-0,1 Железо 0,4-0,7 Кремний 0,45-0,65 Алюминий и неизбежные примеси, в том числе медь в количестве не более 0,05 мас.%, цинк в количестве не более 0,05 мас.%, марганец в количестве не более 0,02 мас.% и хром в количестве не более 0,02 мас.% Остальное

Предлагаемый сплав отличается от известного тем, что он дополнительно содержит цирконий, кальций, железо, кремний и неизбежные примеси, основными из которых являются медь, цинк, марганец и хром, и компоненты взяты в следующем соотношении, мас.%:

Магний 0,45-0,6 Скандий 0,1-0,15 Цирконий 0,1-0,15 Кальций 0,02-0,1 Железо 0,4-0,7 Кремний 0,45-0,65

Алюминий и неизбежные примеси, в том числе медь в количестве не более 0,05 мас.%, цинк в количестве не более 0,05 мас.%, марганец в количестве не более 0,02 мас.% и хром в количестве не более 0,02 мас.% Остальное

Технический результат - повышение прочностных характеристик сплава, что позволяет снизить массу и габариты токопроводящих элементов конструкции, повышая тем самым характеристики весовой отдачи конструкции в целом.

При предлагаемом содержании и соотношении компонентов в предлагаемом сплаве за счет образующихся при неизбежных технологических нагревах вторичных выделений дисперсных интерметаллидов типа Al3(Sc,Zr), а также образующихся при кристаллизации расплава фаз Mg2Si, CaSi2 и Al(Fe,Si), оказывающих непосредственное упрочняющее воздействие, достигается повышенный уровень прочностных свойств в состоянии после высокотемпературного отжига, обеспечивающего максимально возможный для данного химического состава уровень электропроводности. Ограничение содержания неизбежных примесей меди, цинка, марганца и хрома, обладающих заметной растворимостью в алюминии, способствует сохранению достаточно высокого уровня электропроводности сплава.

Пример

Получили предлагаемый сплав из шихты, состоящей из алюминия марки А99, магния марки Мг95, двойных лигатур алюминий-скандий, алюминий-цирконий, алюминий-железо, кальция металлического и силумина. Сплав готовили в электрической печи сопротивления и методом полунепрерывного литья отливали круглые слитки диаметром 370 мм. Химический состав сплава приведен в таблице 1.

Слитки гомогенизировали, после чего резали на заготовки длиной 600 мм, которые затем обтачивали до диаметра 345 мм. Обточенные заготовки прессовали на горизонтальном гидравлическом прессе с максимальным усилием 5000 тс при температуре 390°C на пруток диаметром 120 мм. Пруток подвергали отжигу при температуре 390°C с выдержкой при этой температуре 1 ч. Определяли механические свойства (предел прочности σВ, предел текучести σ0,2, относительное удлинение δ) при испытании на растяжение и удельную электрическую проводимость γ отожженных прессованных прутков. Также определяли механические свойства и удельную электрическую проводимость изготовленных тем же способом прутков из сплава-прототипа, химический состав которого приведен в таблице 1

Результаты испытаний приведены в таблице 2.

Таким образом, предлагаемый сплав имеет в 1,08 раза более высокий предел прочности и в 1,11 раза более высокий предел текучести, что позволит на 8-10% снизить массу и габариты токопроводящих элементов конструкции и соответственно повысить характеристики весовой отдачи конструкции в целом, что принципиально важно для авиакосмической техники, судостроения и других отраслей промышленности.

Похожие патенты RU2612475C1

название год авторы номер документа
Деформируемый сплав на основе алюминия 2016
  • Силис Мария Ильинична
  • Лапин Пётр Георгиевич
  • Юровский Андрей Петрович
  • Перминова Юлия Сергеевна
  • Никитина Маргарита Александровна
  • Байдин Николай Григорьевич
  • Филатов Юрий Аркадьевич
  • Снегирёва Лариса Анатольевна
  • Нилов Евгений Евгеньевич
RU2755836C1
Деформируемый сплав на основе алюминия 2016
  • Силис Валентина Эгоновна
  • Силис Мария Ильинична
  • Лапин Пётр Георгиевич
  • Никитина Маргарита Александровна
  • Байдин Николай Григорьевич
  • Филатов Юрий Аркадьевич
  • Снегирёва Лариса Анатольевна
  • Захаров Валерий Владимирович
  • Чугункова Галина Михайловна
RU2621086C1
Деформируемый сплав на основе алюминия 2022
  • Филатов Юрий Аркадьевич
  • Захаров Валерий Владимирович
  • Снегирева Лариса Анатольевна
  • Дриц Александр Михайлович
  • Игонькин Борис Львович
  • Пономарев Станислав Олегович
RU2793664C1
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ ИЗ НЕГО 2008
  • Овсянников Борис Владимирович
  • Захаров Валерий Владимирович
  • Филатов Юрий Аркадьевич
  • Чертовиков Владимир Михайлович
RU2387725C2
Высокопрочный деформируемый сплав на основе алюминия системы Al-Zn-Mg-Cu и изделие из него 2015
  • Филатов Юрий Аркадьевич
  • Тарануха Галина Владимировна
  • Захаров Валерий Владимирович
  • Чугункова Галина Михайловна
  • Байдин Николай Григорьевич
  • Панасюгина Людмила Ивановна
  • Шадаев Денис Александрович
  • Нилов Евгений Евгеньевич
  • Махов Сергей Владимирович
  • Напалков Виктор Иванович
RU2613270C1
Деформируемый сплав на основе алюминия 2016
  • Силис Валентина Эгоновна
  • Силис Мария Ильинична
  • Лапин Пётр Георгиевич
  • Никитина Маргарита Александровна
  • Байдин Николай Григорьевич
  • Филатов Юрий Аркадьевич
  • Снегирёва Лариса Анатольевна
  • Захаров Валерий Владимирович
  • Чугункова Галина Михайловна
RU2754792C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА 2010
  • Дриц Александр Михайлович
  • Орыщенко Алексей Сергеевич
  • Григорян Валерий Арменакович
  • Осокин Евгений Петрович
  • Барахтина Наталия Николаевна
  • Соседков Сергей Михайлович
  • Арцруни Арташес Андреевич
  • Хромов Александр Петрович
  • Цургозен Леонид Александрович
RU2431692C1
ВЫСОКОПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ ИЗ НЕГО 2008
RU2394113C1
Деформируемый термически неупрочняемый сплав на основе алюминия 2016
  • Байдин Николай Григорьевич
  • Филатов Юрий Аркадьевич
RU2623932C1
ВЫСОКОПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ СИСТЕМЫ Al-Zn-Mg-Cu ПОНИЖЕННОЙ ПЛОТНОСТИ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2013
  • Захаров Валерий Владимирович
  • Телешов Виктор Владимирович
  • Головлёва Анна Петровна
RU2514748C1

Реферат патента 2017 года Деформируемый сплав на основе алюминия

Изобретение относится к области металлургии, в частности к сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов в качестве электропроводного конструкционного материала, в частности для токопроводящих элементов, а также в качестве заготовки для получения электропроводов. Деформируемый сплав на основе алюминия содержит, мас.%: магний 0,45-0,6, скандий 0,1-0,15, цирконий 0,1-0,15, кальций 0,02-0,1, железо 0,4-0,7, кремний 0,45-0,65, алюминий и неизбежные примеси - остальное, в том числе медь не более 0,05, цинк не более 0,05, марганец не более 0,02, хром не более 0,02. Техническим результатом изобретения является повышение прочностных характеристик материала. 1 пр., 2 табл.

Формула изобретения RU 2 612 475 C1

Деформируемый сплав на основе алюминия, содержащий магний, скандий, алюминий и неизбежные примеси, отличающийся тем, что он дополнительно содержит цирконий, кальций, железо и кремний при следующем соотношении компонентов, мас.%:

магний 0,45-0,6 скандий 0,1-0,15 цирконий 0,1-0,15 кальций 0,02-0,1 железо 0,4-0,7 кремний 0,45-0,65

неизбежные примеси, в том числе

медь не более 0,05 цинк не более 0,05

марганец не более 0,02 хром не более 0,02

алюминий остальное

Документы, цитированные в отчете о поиске Патент 2017 года RU2612475C1

АЛЮМИНИЕВЫЙ СПЛАВ 2014
  • Сидельников Сергей Борисович
  • Довженко Николай Николаевич
  • Баранов Владимир Николаевич
  • Беспалов Вадим Михайлович
  • Сидельников Андрей Сергеевич
  • Лопатина Екатерина Сергеевна
  • Трифоненков Антон Леонидович
  • Трифоненков Леонид Петрович
  • Фролов Виктор Федорович
  • Сальников Александр Владимирович
RU2544331C1
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ ИЗ НЕГО 2008
  • Овсянников Борис Владимирович
  • Захаров Валерий Владимирович
  • Филатов Юрий Аркадьевич
  • Чертовиков Владимир Михайлович
RU2387725C2
АЛЮМИНИЕВЫЙ СПЛАВ 2010
  • Баранов Владимир Николаевич
  • Биронт Виталий Семенович
  • Довженко Николай Николаевич
  • Падалка Виктор Андреевич
  • Сидельников Сергей Борисович
  • Трифоненков Леонид Петрович
  • Фролов Виктор Федорович
  • Чичук Евгений Николаевич
RU2458151C1
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2010
  • Филатов Юрий Аркадьевич
  • Аксёнова Елена Александровна
  • Панасюгина Людмила Ивановна
  • Пименов Юрий Петрович
  • Андрусь Наталья Петровна
  • Баженова Ольга Петровна
RU2416658C1
US 6517954 B1, 11.02.2003.

RU 2 612 475 C1

Авторы

Силис Мария Ильинична

Лапин Пётр Георгиевич

Юровский Андрей Петрович

Перминова Юлия Сергеевна

Никитина Маргарита Александровна

Байдин Николай Григорьевич

Филатов Юрий Аркадьевич

Снегирёва Лариса Анатольевна

Нилов Евгений Евгеньевич

Даты

2017-03-09Публикация

2016-03-21Подача