Изобретение относится к области геофизических исследований скважин и предназначено для определения удельного электрического сопротивления горных пород, окружающих обсаженную металлической колонной скважину.
Известен способ электрического каротажа обсаженных скважин на основе двухполюсного симметричного пятиэлектродного зонда, состоящего из трех измерительных и двух токовых электродов, расположенных выше и ниже измерительных электродов. В токовые электроды подается измерительный ток (в нижний - через автокомпенсатор), измеряют потенциал электрического поля, его первую и вторую разности [1]. Потенциал электрического поля измеряется между центральным измерительным электродом и электродом на дневной поверхности.
Недостатком этого метода является присутствие в измерительной схеме автокомпенсатора, практическая реализация которого представляет собой серьезные трудности.
Известны способы электрического каротажа обсаженных скважин на основе двухполюсного симметричного пятиэлектродного зонда, где после поочередной подачи рабочего тока в токовые электроды измеряют потенциал электрического поля, его первую и вторую разности [2], [3], в которых схема автокомпенсатора отсутствует, а «фокусировка тока» вычисляется с помощью математических формул. В измерениях этими способами в значительной мере компенсируется влияние неоднородности обсадной колонны (в частности, замеры в области соединительных муфт выполняются корректно), а способ оцифровки сигналов измерительных электродов позволяет выполнять измерения в зоне индустриальных помех (насосные станции, буровые установки).
Общим недостатком этих способов является то, что за один цикл измерения удается измерить удельное сопротивление только в одной точке глубины.
Известны устройства, описанные в патентах [4], [5], [6], использующие два токовых электрода и число измерительных электродов более трех, позволяющих (при группировке сопредельных измерительных электродов по три) проводить измерения одновременно в нескольких точках глубины.
Недостатком всех вышеописанных способов и устройств является то, что для точного измерения напряжения между измерительным электродом скважинного прибора и электродом на дневной поверхности ([1], [2] - поз. 17 фиг. 1; [3] - поз. 10 фиг. 1; [4], [5] - поз. 3 фиг. 1) полностью выделяется одна жила каротажного кабеля, выполняющая какую-то полезную работу очень ограниченное время. По этой жиле с дневной поверхности в скважинный прибор передается потенциал колонны относительно одного из измерительных электродов. Кроме того, поскольку использующая эту жилу цепь низковольтная (напряжение не превышает десятых долей вольта, а передается по кабелю длиной в несколько километров), возникают проблемы с эффективной фильтрацией индустриальных помех. Одновременное использование одного и того же измерительного электрода для измерения первых и вторых разностей и измерения потенциала колонны невозможно, поскольку цепью измерения потенциала вносятся погрешности в цепь измерения разностей. На практике, как правило, используется специальный этап измерения, в котором при поочередной подаче тока в токовые электроды измеряется только потенциал колонны, либо, чтобы одновременно измерять и разности и потенциал, в изобретении по патенту [7] используется дополнительный измерительный электрод в скважинном приборе.
Разработанный способ позволяет вычислять потенциал колонны и производить измерение первых-вторых разностей одновременно без выделения для измерения потенциала отдельной жилы каротажного кабеля.
Целью разработанного способа является повышение точности измерений путем решения проблемы нерационального использования одной из жил каротажного кабеля, которая препятствует применению в измерениях повышенного измерительного тока.
В качестве прототипа изобретения выбран способ, описанный в патенте [3].
В изобретении решаются вышеуказанные проблемы нерационального использования одной из жил каротажного кабеля, обеспечивается увеличение тока на 25%, что пропорционально влияет на точность измеряемых величин, предусмотрена возможность подключения геофизических каротажных кабелей с различными индукционно-емкостными характеристиками.
Этот технический результат достигается тем, что используется зонд, состоящий из двух токовых электродов и нескольких, не менее трех, измерительных электродов, расположенных в пределах токовых электродов, причем в каждый токовый электрод относительно находящегося на земной поверхности электрода заземления поочередно подают ток из источника высокостабильного постоянного тока, при этом производятся замеры напряжения между каждым измерительным и соседним с ним электродом, производится оцифровка и цифровая обработка измеренных сигналов, результаты по каждой точке измерения вычисляются относительно групп из трех близлежащих электродов, а удельное сопротивление окружающих колонну пород в каждой точке определяют по приведенной ниже формуле (для точки, измеряемой группой электродов М1М2М3)
где Kz - коэффициент зонда, Um1m2(Al), Um2m3(Al), Um1m2(A2), Um2m3(A2) - напряжения между измерительными электродами М1, М2 и М3 при подаче тока в электроды А1 и А2 соответственно, I - ток высокостабильного источника питания;
коэффициент фокусировки Kf вычисляется по формуле:
согласно изобретению потенциал колонны Ukol вычисляется по формуле
где Uin - напряжение на входе каротажного кабеля, Ukab - падение напряжения на токовых жилах каротажного кабеля.
Измерение напряжения на входе каротажного кабеля и измерение падения напряжения на токовых жилах каротажного кабеля производится измерителями, расположенными на земной поверхности.
Отличие способа от прототипа заключается в том, что измерение потенциала колонны производится не измерителем напряжения, находящимся в скважинном приборе, а косвенным методом - измерением падения напряжения в точках, находящихся в наземной части измерительного комплекса, и вычислением с их помощью потенциала колонны.
Потенциал колонны Ukol вычисляется по формуле
где Uin - напряжение на входе каротажного кабеля, Ukab - падение напряжения на токовых жилах каротажного кабеля.
Электрическая часть зонда отличается от прототипа отсутствием цепи измерения потенциала колонны относительно одного из измерительных электродов и присутствием прецизионных измерителей напряжения в наземной части аппаратуры, измеряющих напряжение источника тока и падение напряжения на токовых жилах кабеля.
Функциональная схема изобретения представлена на фиг. 1. На фиг. 1 изображены: 1 - точка заземления обратного токового электрода на земной поверхности, 2 - место контакта верхнего токового электрода с обсадной колонной, 3 - место контакта верхнего измерительного электрода с обсадной колонной, 4 - место контакта второго сверху измерительного электрода с обсадной колонной, 5 - место контакта нижнего измерительного электрода с обсадной колонной, 6 - место контакта нижнего токового электрода с обсадной колонной, 7 - ключ верхнего токового электрода, 8 - ключ нижнего токового электрода, 9 - узел оцифровки сигналов измерительных электродов, 10 - прецизионный источник тока, 11, 12, 13 - прецизионные измерители напряжения с цифровым выходом, 14 - ключ шунтирующий, 15 - вспомогательная токовая жила каротажного кабеля, 16 - основные токовые жилы каротажного кабеля, 17 - дневная поверхность, 18 - электрод на устье скважины, 19 - обсадная колонна, 35 - электрические жилы каротажного кабеля, 36 - управляющий контроллер, 37 - регистрирующий компьютер.
Цикл измерения происходит следующим образом:
- шунтирующий ключ включен (поз. 14 фиг. 1);
- включается ключ верхнего токового электрода (поз. 7 фиг. 1);
- источник тока (поз. 10 фиг. 1) подает в цепь ток положительной полярности;
- измерителем напряжения (поз. 11 фиг. 1) оценивается качество заземления обратного токового электрода;
- напряжения между каждым измерительным и соседним с ним электродом оцифровываются и передаются по системе телеметрии;
- измерителем (поз. 12 фиг. 1) производится оцифровка значений напряжений;
- источник тока (поз. 10 фиг. 1) подает в цепь ток отрицательной полярности;
- напряжения между каждым измерительным и соседним с ним электродом оцифровываются и передаются по системе телеметрии;
- складываются соответственно друг другу положительные и отрицательные кванты полученных напряжений каждого канала измерения, производится цифровая обработка, вычисляются первые и вторые разности;
- включается ключ нижнего токового электрода (поз. 8 фиг. 1);
- источник тока (поз. 10 фиг. 1) подает в цепь ток положительной полярности;
- напряжения между каждым измерительным и соседним с ним электродом оцифровываются и передаются по системе телеметрии;
- источник тока (поз. 10 фиг. 1) подает в цепь ток отрицательной полярности;
- напряжения между каждым измерительным и соседним с ним электродом оцифровываются и передаются по системе телеметрии;
- измерителем (поз. 12 фиг. 1) производится оцифровка значений напряжений;
- источник тока (поз. 10 фиг. 1) выключается;
- складываются соответственно друг другу положительные и отрицательные кванты полученных напряжений каждого канала измерения, производится цифровая обработка, вычисляются первые и вторые разности;
- производится калибровка сопротивления токовых жил кабеля, для чего:
- включаются ключи (поз. 7, 8 фиг. 1) верхнего и нижнего токового электродов;
- шунтирующий ключ (поз. 14 фиг. 1) выключается;
- источник тока (поз. 10 фиг. 1) подает в цепь ток положительной полярности;
- измерителем напряжения (поз. 13 фиг. 1) измеряется падение напряжения на токовых жилах каротажного кабеля Ukab;
- источник тока (поз. 10 фиг. 1) выключается;
- складываются соответственно друг другу положительные и отрицательные кванты полученных измерителем 12 напряжений, производится цифровая обработка, вычисляется напряжение на входе кабеля Uin, вычисляется потенциал колонны Ukol;
- вычисляется удельное сопротивление окружающих колонну пород по каждой точке измерения.
Результаты по каждой точке измерения вычисляются относительно групп из трех близлежащих электродов. Например, имея 4 измерительных электрода M1, М2, М3, М4, можно производить измерения по двум точкам - М1М2М3 и М2М3М4.
Ниже приведен пример для точки М1М2МЗ.
Потенциал колонны Ukol вычисляется по формуле
Ukol=Uin Ukab
где Uin - напряжение на входе каротажного кабеля, Ukab - падение напряжения на токовых жилах каротажного кабеля, при этом измерение напряжения на входе каротажного кабеля и измерение падения напряжения на токовых жилах каротажного кабеля производится с помощью измерителей 12, 13, расположенных на земной поверхности.
Коэффициент фокусировки Kf вычисляется по формуле
Удельное электрическое сопротивление вычисляется по формуле
где Kz - коэффициент зонда, Um1m2(Al), Um2m3(Al), Um1m2(A2), Um2m3(A2) - напряжения между измерительными электродами М1, М2 и М3 при подаче тока в электроды А1 и А2 соответственно, I - ток высокостабильного источника питания.
Источники информации
[1] Патент №2229735. Способ электрического каротажа обсаженных скважин.
[2] Патент №2176802. Способ электрического каротажа обсаженных скважин.
[3] Патент №2382385. Способ электрического каротажа обсаженных скважин.
[4] Патент №2488852. Устройство для каротажа скважин, обсаженных металлической колонной.
[5] Патент №115510. Устройство для электрического каротажа через металлическую колонну.
[6] Патент №2408039. Способ электрического каротажа обсаженных скважин.
[7] Патент №2536732. Способ и устройство каротажа обсаженной скважины.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ЭЛЕКТРИЧЕСКОГО КАРОТАЖА ОБСАЖЕННЫХ СКВАЖИН | 2009 |
|
RU2382385C1 |
УСТРОЙСТВО ДЛЯ КАРОТАЖА СКВАЖИН, ОБСАЖЕННЫХ МЕТАЛЛИЧЕСКОЙ КОЛОННОЙ | 2011 |
|
RU2488852C1 |
Устройство для каротажа скважин, обсаженных металлической колонной | 2011 |
|
RU2630991C1 |
Устройство для электрического каротажа через металлическую колонну | 2011 |
|
RU2631099C2 |
СПОСОБ И УСТРОЙСТВО ЭЛЕКТРИЧЕСКОГО КАРОТАЖА ОБСАЖЕННОЙ СКВАЖИНЫ | 2005 |
|
RU2306582C1 |
СПОСОБ И УСТРОЙСТВО ЭЛЕКТРИЧЕСКОГО КАРОТАЖА ОБСАЖЕННОЙ СКВАЖИНЫ | 2005 |
|
RU2536732C2 |
УСТРОЙСТВО ДЛЯ ЭЛЕКТРИЧЕСКОГО КАРОТАЖА ЧЕРЕЗ МЕТАЛЛИЧЕСКУЮ КОЛОННУ | 2011 |
|
RU2508561C2 |
Способ и устройство электрического каротажа обсаженных скважин | 2018 |
|
RU2691920C1 |
СПОСОБ ЭЛЕКТРИЧЕСКОГО КАРОТАЖА ОБСАЖЕННЫХ СКВАЖИН | 2008 |
|
RU2361246C1 |
СПОСОБ ЭЛЕКТРИЧЕСКОГО КАРОТАЖА ОБСАЖЕННЫХ СКВАЖИН | 2009 |
|
RU2408039C1 |
Изобретение относится к области геофизических исследований скважин и позволяет определять удельное электрическое сопротивление пластов, находящихся за стальной обсадной колонной скважины. Сущность: способ использует зонд, состоящий из двух токовых электродов и нескольких измерительных электродов (не меньше трех). В каждый токовый электрод относительно находящегося на земной поверхности электрода заземления поочередно подают ток из высокостабильного источника постоянного тока, при этом производятся замеры напряжения между каждым измерительным и соседним с ним электродом, одновременно производится точное измерение выходного напряжения источника тока. Производится оцифровка и цифровая обработка измеренных сигналов. Удельное сопротивление в одной или нескольких точках (в зависимости от количества измерительных электродов) определяют по соответствующей формуле. Технический результат: повышение точности. 1 ил.
Способ электрического каротажа, в котором используют зонд, состоящий из двух токовых электродов и нескольких, не менее трех, измерительных электродов, расположенных в пределах токовых электродов, причем в каждый токовый электрод относительно находящегося на земной поверхности электрода заземления поочередно подают ток из источника высокостабильного постоянного тока, при этом производятся замеры напряжения между каждым измерительным и соседним с ним электродом, производится оцифровка и цифровая обработка измеренных сигналов, результаты по каждой точке измерения вычисляются относительно групп из трех близлежащих электродов, а удельное сопротивление окружающих колонну пород в каждой точке определяют по приведенной ниже формуле
для точки, измеряемой группой электродов М1М2МЗ,
где Kz - коэффициент зонда, Um1m2(A1), Um2m3(A1), Um1m2(A2), Um2m3(A2) - напряжения между измерительными электродами М1, М2 и М3 при подаче тока в электроды А1 и А2 соответственно, I - ток высокостабильного источника питания;
коэффициент фокусировки Kf вычисляется по формуле
,
отличающийся тем, что потенциал колонны Ukol вычисляется по формуле:
Ukol=Uin-Ukab,
где Uin - напряжение на входе каротажного кабеля, Ukab - падение напряжения на токовых жилах каротажного кабеля,
при этом измерение напряжения на входе каротажного кабеля и измерение падения напряжения на токовых жилах каротажного кабеля производится измерителями, расположенными на земной поверхности.
СПОСОБ ЭЛЕКТРИЧЕСКОГО КАРОТАЖА ОБСАЖЕННЫХ СКВАЖИН | 2009 |
|
RU2382385C1 |
СПОСОБ ЭЛЕКТРИЧЕСКОГО КАРОТАЖА ОБСАЖЕННЫХ СКВАЖИН | 2009 |
|
RU2408039C1 |
СПОСОБ ЭЛЕКТРИЧЕСКОГО КАРОТАЖА ОБСАЖЕННЫХ СКВАЖИН | 2008 |
|
RU2361246C1 |
US 6025721, 15.02.2000 | |||
US 6603314 B1, 05.08.2003. |
Авторы
Даты
2017-04-04—Публикация
2015-10-09—Подача