Заявленное техническое решение относится к области компрессоростроения, а именно к рабочим колесам центробежных компрессоров, может быть использовано в конструкциях одно- или многоступенчатых компрессоров газотурбинных двигателей, а также в насосах, радиальных турбинах.
Известно полуоткрытое рабочее колесо центробежного компрессора, где средняя поверхность лопатки образована радиальными лучами, проходящими через ось колеса, в связи с чем углы лопатки на втулочном меридиональном контуре определяются из уравнения («Автомобильные двигатели с турбонаддувом» Аболтин Э.В., Ханин Н.С. и др. «Машиностроение», 1991, стр. 88, 89), где
βл - угол лопатки;
вт - втулочный контур проточной части рабочего колеса;
пер - периферийный контур проточной части рабочего колеса;
Dвт - диаметр пересечения радиального луча с втулочным меридиональным контуром;
Dпер - диаметр пересечения радиального луча с периферийным меридиональным контуром.
Недостатком известного рабочего колеса центробежного компрессора является то, что имеется однозначная связь между углами лопатки у основания βл вт и углом лопатки на периферии βл пер, что не позволяет обеспечить одновременно оптимальное значение углов βл вт и βл пер от входной кромки лопатки до выходной, полученных из расчета потока в канале колеса, что приводит к снижению КПД колеса компрессора в целом.
Наиболее близким к заявленному техническому решению по совокупности существенных признаков является рабочее колесо центробежного компрессора (свидетельство на полезную модель №6588, пр. 02.04.1997 г., МКИ F04D 29/22), содержащее основной и покрывной диски, образующие канал для прохождения рабочего газа, в котором установлены лопатки с переменными по ширине канала углами входа β1л и углами выхода β2л, причем поверхность каждой лопатки выполнена в виде поверхности вращения, имеющей угол наклона к собственной оси. При этом угол наклона выполнен плавно изменяющимся от основного диска к покрывному диску.
Это техническое решение позволяет повысить КПД центробежного компрессора за счет обеспечения оптимального обтекания потоком входной и выходной кромок лопатки рабочего колеса, при этом профиль средней линии лопатки вдоль канала от входной кромки лопатки к выходной образован частью окружности, что в отличие от заявленного решения не позволяет обеспечить необходимые углы лопатки βл пер и βл вт на периферийном и втулочном контурах меридионального сечения рабочего колеса, что приводит к снижению КПД центробежного компрессора.
Технический результат предлагаемого изобретения заключается в снижении гидравлических потерь в рабочем колесе и в повышении КПД центробежного компрессора за счет обеспечения необходимых углов лопатки как по ширине канала рабочего колеса, так и по длине.
Указанный технический результат достигается тем, что в рабочем колесе центробежного компрессора, содержащем несущий диск, на котором установлены лопатки с переменными по длине канала углами βл пер и βл вт на его периферийном и втулочном контурах проточной части рабочего колеса, причем средняя поверхность пера каждой лопатки выполнена в виде поверхности, полученной перемещением прямолинейного отрезка, концы которого получены перемещением точек пересечения с периферийным и втулочным контурами меридионального сечения проточной части рабочего колеса прямой линией, совершающей поворот в меридиональной плоскости рабочего колеса с постоянным центром на угол ψ от перпендикуляра к оси рабочего колеса, проходящего через центр поворота прямой, и прямой линией от входной кромки лопатки до выходной по дуге окружности на углы ϕпер и ϕвт между меридиональной плоскостью и радиусами данной окружности, проходящими от оси колеса в данные точки, а геометрические параметры рабочего колеса выполнены с учетом обеспечения соотношений
где
ϕ - угол между радиусом, проходящим через концы средней линии лопатки, и меридиональной плоскостью при текущем значении угловой координаты ψ;
пер. - периферийный контур проточной части рабочего колеса в меридиональном ее сечении;
i - порядковый номер отрезка при разбиении проточной части меридионального контура на n частей по значению угла ψ;
n - число частей при разбиении проточной части меридионального контура по значению угла ψ;
RA - расстояние от центра поворота прямой линии до точки пересечения данной прямой с периферийным контуром меридионального сечения проточной части рабочего колеса при принятом значении угла ψ;
ψ - угловая координата рабочего колеса в пределах ее меридиональной плоскости, начало которой берется от перпендикуляра к оси колеса, проходящего через центр поворота прямой, и прямой, при пересечении которой с меридиональным контуром получены периферийные и втулочные точки, при повороте которых по дуге окружности на угол ϕ от меридиональной плоскости образуются концы средней линии лопатки;
β л пер - угол лопатки на периферийном контуре проточной части меридионального сечения рабочего колеса;
Ho - расстояние от оси рабочего колеса до центра поворота прямой линии;
вт. - втулочный контур проточной части рабочего колеса в меридиональном ее сечении;
βл вт - угол лопатки на втулочном контуре проточной части меридионального сечения рабочего колеса;
RБ - расстояние от центра поворота прямой линии до точки пересечения данной прямой с втулочным контуром меридионального сечения проточной части рабочего колеса при принятом значении угла ψ.
При этом обеспечиваются углы лопатки на периферийном βл пер и втулочном βл вт контурах рабочего колеса, независимых друг от друга. Продолжение средней линии лопатки может проходить как через ось колеса (ϕ пер=ϕ вт), так и не пересекая ее (ϕ пер не равно ϕ вт). Неравенство углов ф пер и ф вт на начальном участке лопатки от ее входной кромки позволяет обеспечить оптимальные углы атаки потока на входе в рабочее колесо с обеспечением прочности лопатки, а на конечном участке у выходной кромки позволяет получить более равномерный поток на выходе из рабочего колеса, что в целом повышает эффективность работы компрессора.
Заявленное техническое решение поясняется чертежами, где на:
- фиг. 1 изображено рабочее колесо центробежного компрессора с частичным продольным разрезом (меридиональное сечение) с возможным набором лопаток как полных осерадиальных, так и расчетно-укороченных, разделительных;
- фиг. 2 показано сечение лопатки Д-Д, проходящей через концы отрезка прямой, образующих среднюю линию лопатки с равным значением величины углов ϕ пер=ϕ вт;
- фиг. 3 показано сечение лопатки Г-Г, проходящей через концы отрезка прямой образующих среднюю линию лопатки с неравным значением величины углов ϕ пер и ϕ вт.
Рабочее колесо центробежного компрессора содержит (фиг. 1) несущий диск 1 и взаимосвязанные с ним осерадиальные лопатки - основные 7 и разделительные 5, образующие канал для прохода рабочего газа. При этом каждая лопатка имеет полученные из расчета потока в канале колеса углы βл пер 10 на периферийном 4 и βл вт 9 на втулочном 2 контурах меридионального сечения. При этом каждая из вышеназванных лопаток имеет входные 8 и выходные 3 кромки.
На фиг. 1, 2, 3 показана схема получения средней поверхности пера лопатки прямой ОБ при пересечении ее периферийного 4 (точка А) и втулочного 2 (точка Б) контуров меридионального сечения.
Прямая ОБ совершает поворот вокруг центра 6 на угол ψ от вертикали. Центр 6 находится на расстоянии Н0 от оси рабочего колеса.
На фиг. 3 показано, что углы поворота ϕпер и ϕвт точек А и Б могут иметь неравное значение.
На фиг. 2 показано, что углы поворота ϕ пер и ϕ вт точек А и Б имеют равное значение.
Для обеспечения полученных из газодинамического расчета потока рабочего колеса углов βл пер и βл вт определяются углы ϕ пер и ϕ вт поворота концов отрезка прямой АБ при известном угле ψ поворота прямой вокруг постоянного центра 0 с учетом обеспечения соотношений (см. фиг. 1, 2 и 3).
где
ϕ - угол между радиусом, проходящим через концы средней линии лопатки, и меридиональной плоскостью при текущем значении угловой координаты ψ;
пер. - периферийный контур проточной части рабочего колеса в меридиональном ее сечении;
i - порядковый номер отрезка при разбиении проточной части меридионального контура на n частей по значению угла ψ;
n - число частей при разбиении проточной части меридионального контура по значению угла ψ;
RA - расстояние от центра поворота прямой линии до точки пересечения данной прямой с периферийным контуром меридионального сечения проточной части рабочего колеса при принятом значении угла ψ;
ψ - угловая координата рабочего колеса в пределах ее меридиональной плоскости, начало которой берется от перпендикуляра к оси колеса, проходящего через центр поворота прямой, и прямой, при пересечении которой с меридиональным контуром получены периферийные и втулочные точки, при повороте которых по дуге окружности на угол ϕ от меридиональной плоскости образуются концы средней линии лопатки;
βл пер - угол лопатки на периферийном контуре проточной части меридионального сечения рабочего колеса;
Нo - расстояние от оси рабочего колеса до центра поворота прямой линии;
вт.- втулочный контур проточной части рабочего колеса в меридиональном ее сечении;
βл вт - угол лопатки на втулочном контуре проточной части меридионального сечения рабочего колеса;
RБ - расстояние от центра поворота прямой линии до точки пересечения данной прямой с втулочным контуром меридионального сечения проточной части рабочего колеса при принятом значении угла ψ.
Данный расчет проводится как для периферийного, так и для втулочного контуров. Величины βл пepi и βл втi, RAi, RБi=f(ψ) получены из расчета потока в канале колеса. При полученных значениях ϕпepi=f(ψ) и ϕвтi=f(ψ) определяется положение скелетной линии лопатки (см. рис. 2, 3).
При работе центробежного компрессора газу, поступающему в межлопаточные каналы, передается кинетическая энергия вращающегося рабочего колеса 1 (фиг. 1). Существующая разность давлений рабочего тела в межлопаточном канале вызывает вторичные течения, перпендикулярные к основному потоку, которые направлены от стороны давления к стороне разрежения, а также от корневой части к периферии пера лопатки рабочего колеса. Интенсивность вторичных течений зависит от величины углов лопатки βл пер и βл вт, а получение оптимального распределения данных углов вдоль меридионального контура колеса способствует снижению потерь от вихреобразования при смешивании и повышает КПД компрессора в целом.
Согласно представленному в описании техническому решению изготовлены образцы рабочего колеса центробежного одноступенчатого компрессора со степенью сжатия πк=6-8, прошедшие испытания в профиле реального газотурбинного наземного транспортного двигателя, на котором повышен коэффициент полезного действия компрессора на 2%, что подтверждает заявленный технический результат.
Заявленное техническое решение относится к области компрессоростроения, а именно к рабочим колесам центробежных компрессоров. При работе центробежного компрессора газу, поступающему в межлопаточные каналы, передается кинетическая энергия вращающегося рабочего колеса. Существующая разность давлений рабочего тела в межлопаточном канале вызывает вторичные течения, перпендикулярные к основному потоку, которые направлены от стороны давления к стороне разрежения, а также от корневой части к периферии пера лопатки рабочего колеса. Интенсивность вторичных течений зависит от величины углов лопатки βл пер и βл вт, а получение оптимального распределения данных углов вдоль меридионального контура колеса способствует снижению потерь от вихреобразования при смешивании и повышает КПД компрессора в целом. Технический результат изобретения заключается в снижении гидравлических потерь в рабочем колесе и в повышении КПД центробежного компрессора. 1 з.п. ф-лы, 3 ил.
1. Рабочее колесо центробежного компрессора, содержащее несущий диск, на котором установлены лопатки с переменными по длине канала углами βл пер и βл вт на его периферийном и втулочном контурах проточной части рабочего колеса, отличающийся тем, что средняя поверхность пера каждой лопатки выполнена в виде поверхности, полученной перемещением прямолинейного отрезка, концы которого получены перемещением точек пересечения с периферийным и втулочным контурами меридионального сечения проточной части рабочего колеса прямой линией, совершающей поворот в меридиональной плоскости рабочего колеса с постоянным центром на угол ψ от перпендикуляра к оси рабочего колеса, проходящего через центр поворота прямой, и прямой линией от входной кромки лопатки до выходной по дуге окружности на углы ϕпер и ϕвт между меридиональной плоскостью и радиусами данной окружности, проходящими от оси колеса в данные точки, а геометрические параметры рабочего колеса выполнены с учетом обеспечения соотношений
где
ϕ - угол между радиусом, проходящим через концы средней линии лопатки, и меридиональной плоскостью при текущем значении угловой координаты ψ;
пер. - периферийный контур проточной части рабочего колеса в меридиональном ее сечении;
i - порядковый номер отрезка при разбиении проточной части меридионального контура на n частей по значению угла ψ;
n - число частей при разбиении проточной части меридионального контура по значению угла ψ;
RA - расстояние от центра поворота прямой линии до точки пересечения данной прямой с периферийным контуром меридионального сечения проточной части рабочего колеса при принятом значении угла ψ;
ψ - угловая координата рабочего колеса в пределах ее меридиональной плоскости, начало которой берется от перпендикуляра к оси колеса, проходящего через центр поворота прямой, и прямой, при пересечении которой с меридиональным контуром получены периферийные и втулочные точки, при повороте которых по дуге окружности на угол ϕ от меридиональной плоскости образуются концы средней линии лопатки;
βл пер - угол лопатки на периферийном контуре проточной части меридионального сечения рабочего колеса;
Н0 - расстояние от оси рабочего колеса до центра поворота прямой линии;
вт. - втулочный контур проточной части рабочего колеса в меридиональном ее сечении;
RБ - расстояние от центра поворота прямой линии до точки пересечения данной прямой с втулочным контуром меридионального сечения проточной части рабочего колеса при принятом значении угла ψ;
βл вт - угол лопатки на втулочном контуре проточной части меридионального сечения рабочего колеса.
2. Рабочее колесо по п. 1, отличающееся тем, что величины углов ϕпер и ϕвт поворота вокруг оси колеса концов средней линии лопатки могут иметь как равные, так и различные значения.
СТРОГАЛЬНЫЙ СТАНОК ДЛЯ ОБРАБОТКИ ДЕРЕВА ПО ШАБЛОНУ | 1927 |
|
SU6588A1 |
РАБОЧЕЕ КОЛЕСО ЦЕНТРОБЕЖНОГО КОМПРЕССОРА | 2010 |
|
RU2449179C1 |
DE 102010039889 A1, 01.03.2012 | |||
Генератор пилообразного напряжения | 1975 |
|
SU575763A1 |
Авторы
Даты
2017-04-05—Публикация
2016-04-28—Подача